
Irreversible adsorption of particles after diffusing in a gravitational field

Jordi Faraudo* and Javier Bafaluy†

Departament de Fı´sica, Universitat Auto`noma de Barcelona, 08 193 Bellaterra, Barcelona, Spain
~Received 28 May 1996!

In this paper we analyze the influence of transport mechanisms~diffusion and sedimentation! on the struc-
ture of monolayers of particles irreversibly adsorbed on a line. We focus our attention on the dependence of the
radial distribution functiong(r ) and the saturation coverageu` on the gravitational Pe´clet numberNg . First,
we study the probability density of adsorption onto an available interval using approximate solutions of the
transport equation and computer simulations. Combining our results with an approximate general formalism,
we can obtain values ofu` and the gap density, which agree with our simulations. We also show that, for large
gravity, the coverageu` approaches the ballistic limit following a power law inNg that is independent of the
number of dimensions, as has been observed in simulations R. Ezzeddine, P. Schaaf, J. C. Voegel, and B.
Senger, Phys. Rev. E51, 6286~1995!. @S1063-651X~96!10610-3#

PACS number~s!: 05.60.1w, 82.70.Dd, 68.10.Jy

I. INTRODUCTION

The adsorption of particles of colloidal size~macromol-
ecules, latexes, bacteria, etc.! from fluid suspensions to solid
surfaces is a complex phenomenon of great interest. Much
effort has been devoted to the study of the mechanisms in-
volved in this process@1#. A complete description should
consider the different steps involved:~i! transport of the par-
ticles from the bulk suspension toward the interface;~ii ! in-
teraction with the substrate~including the layer formed by
the previously adsorbed particles!; ~iii ! surface diffusion and
desorption. For many colloidal particles, for example, some
proteins@2,3# or latexes@4,5#, neither surface diffusion nor
desorption is observed in the time scale accessible to experi-
ments: the particles remain immobilized after adsorption,
and the process can be considered irreversible. Conse-
quently, nonequilibrium configurations are generated and,
when the surface coverage attains a given value, ajamming
configuration is obtained, with no space available on the sur-
face for the adsorption of new particles.

The simplest model that attempts to describe these irre-
versible adsorption phenomena, is the random sequential ad-
sorption ~RSA! model @6–12#. In this model, particles are
sequentially added to the surface by iteration of the follow-
ing algorithm:~a! a random position is selected for the addi-
tion of a new particle;~b! if the new particle overlaps any
particle already adsorbed on the surface, the adsorption at-
tempt is rejected;~c! if the new particle does not overlap any
other particle, then the adsorption attempt is accepted;~d! the
time necessary for the adsorption of the particle is propor-
tional to the number of adsorption attempts. The RSA model
has been extensively studied in both discrete and continuous
surfaces@6#. Exact results for the kinetics, jamming cover-
age, and distribution functions can be obtained analytically
for one-dimensional surfaces@10#; for two-dimensional sur-
faces one has to use approximate methods@11,12# or com-
puter simulations@9#.

Clearly, the RSA model does not consider the transport of
the particles toward the surface. Instead it assumes that new
particles arrive to the neighborhood of the surface with uni-
form probability, and then they interact with the partially
covered surface on the basis of excluded volume interac-
tions. More realistic models must consider the different
transport mechanisms that are present in colloidal systems:
diffusion, gravity, externally imposed flows, and hydrody-
namic and double layer forces@13#.

For large enough particles suspended in a fluid at rest,
gravity is the dominant force: large particles sediment fol-
lowing a ballistic trajectory toward the surface. This situation
is described by the ballistic deposition~BD! model @14,15#,
in which step~b! of the RSA model is modified in the fol-
lowing way: if the incoming particle overlaps a preadsorbed
one, then it rolls down the steepest descent path until either it
reaches the surface and is adsorbed, or it is trapped in a
cavity over other particles, and is rejected. This model is
exactly solvable for one-dimensional surfaces@15,16#, and
extensive approximate studies have been realized for two-
dimensional surfaces@14#.

In the opposite limit of very small particles, Brownian
motion becomes the dominant transport mechanism. A
model describing this situation is the diffusion RSA~DRSA!
model @17#: the initial position of each particle is randomly
chosen in a plane at a given distance of the surface, and its
trajectory is simulated by using a Brownian dynamic algo-
rithm @18#; if the particle touches the surface it adsorbs irre-
versibly. Furthermore, to avoid unbound Brownian trajecto-
ries, particles arriving at points too far from the surface are
rejected. The simulation of this model is much more expen-
sive computationally than the RSA model and, furthermore,
it admits no exact solution even for one-dimensional sur-
faces. Surprisingly, the jammed state obtained is very similar
to the jammed state obtained with the RSA model: very
small differences appear in one-dimensional surfaces, while
in two-dimensional surfaces the jamming states obtained
from both models are indistinguishable with the precision of
the simulations. Analytically, good approximations can be
obtained for jammed one-dimensional surfaces from ap-
proximate solutions of the diffusion equation@19#.
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For particles of general size both, the Brownian motion
and gravity have to be considered. Simulation studies have
been done including the gravity force in the Brownian dy-
namics algorithm@20#. The results show how the properties
characterizing the surface structure change smoothly with in-
creasing gravity, from the DRSA behavior in the limit of
small gravity to the ballistic values in the limit of large grav-
ity. One interesting result is that the dependence of the jam-
ming coverage on the size of the particles seems to scale to a
common curve both for one- and two-dimensional surfaces
@21#. Therefore, the information obtained from one-
dimensional surfaces can be relevant also to the more realis-
tic two-dimensional ones.

Finally, any realistic model has to include the effect of the
hydrodynamic interactions~HI!, which become important
when the particles are in the neighborhood of the surface.
Simulation results@22,23# suggest that the effect of HI on
global averaged quantities is small although they should be
taken into account for a fine analysis of the local structure. It
can be useful therefore to study simpler models that neglect
hydrodynamic interactions but can be analytically solved.

Our aim in this paper is to develop an analytic approxi-
mation to the description of the adsorption of particles on
one-dimensional surfaces considering the gravity force and
Brownian motion and neglecting hydrodynamic interactions.
To do this, we first need solutions for the transport equation
in the presence of a flat adsorbing surface and many particles
fixed on it. These solutions can be obtained with a sufficient
approximation when only one particle is fixed on the surface.
Then, a superposition approximation has to be done to study
surfaces at finite coverage; this superposition has shown
good results for the DRSA model@19#, and in the present
model it also gives good agreement with the simulations.

In Sec. II we describe the model and the analytical tools
we use in detail. In Sec. III the one-particle effects are stud-
ied by approximate solution of the transport equation and
computer simulation. The results of this section allow us to
obtain an approximate description of the adsorbed phase that
is compared with simulations in Sec. IV. Finally, Appen-
dixes A and B show how the approximate solutions of the
transport equation can be obtained.

II. DESCRIPTION OF THE MODEL

We want to study a simple model that may allow us to
understand the effect on the structure of the adsorbed layer of
two simple transport mechanisms, namely, diffusion and
sedimentation. We consider an adsorbing surface atz50 and
a semi-infinite fluid in the regionz.0. Spherical particles of
radiusR suspended in the fluid diffuse in theXZ plane and
sediment due to the effect of a uniform gravitational field in
theZ direction. If the center of a new particle arrives at the
z50 line, it is adsorbed irreversibly at the contact point. We
assume that the bulk concentration of particles is so small
that interactions between them are negligible. Consequently,
each particle adsorbs independently of the other particles in
the suspension, and the process can be considered assequen-
tial. However, the concentration becomes large at the sur-
face, where adsorbed particles accumulate and interact via
excluded volume effects with incoming particles.

This adsorption problem can be studied in two steps: first,

the transport problem for a single particle near the surface in
the presence of the previously adsorbed particles has to be
solved; then, the evolution of the adsorbed phase can be
studied from the obtained adsorption probabilities.

Let P(rW,t) be the probability density to find the center of
mass of a particle at the pointrW at time t; under the condi-
tions of negligible inertia and small relaxation time, the
transport of the particle to the adsorbing line is governed by
the Smoluchowski equation,

]P~rW,t !

]t
5¹W •@D¹W P~rW,t !1uP~rW,t !zŴ#, ~1!

u being the sedimentation velocity andD the diffusion co-
efficient assumed constant. The probability flux is given by

JW~rW,t !52D¹W P~rW,t !2uP~rW,t !zŴ. ~2!

The hard-particle interaction between bulk particles and ad-
sorbed ones is considered in the boundary conditions for Eq.
~1! by assuming that the radial probability flux must vanish
at the exclusion surface~Fig. 1! delimited by the preadsorbed
particles. At the adsorbing line we impose perfectly adsorb-
ing boundary conditions (P50). Furthermore, we assume
the initial conditionP(rW,t50)5d(z2z0), z0 being the ini-
tial distance of the center of the particle to the line; the value
of z0 is not important provided thatz0.2R.

Equation~1! with its boundary conditions can be made
dimensionless by measuring distances in units of the diam-
eter 2R of the particles and time in units of the characteristic
diffusion time tdi f f54R2/D. Thus, the solution of~1! de-
pends on a single dimensionless parameter, the gravitational
Péclet numberNg , defined as the quotient betweentdi f f and
the characteristic sedimentation timetdet52R/u,

Ng5
tdi f f
tdet

5
2Ru

D
5
8pR4gDr

3kBT
, ~3!

where g is the acceleration of gravity,Dr the difference
between the densities of the particles and the fluid, andT the
absolute temperature. IfNg@1 the motion of the particles is
deterministic and we recover the ballistic deposition model
~denoted in the following by BD!, whereas ifNg!1 Brown-
ian motion predominates and we recover the DRSA model
@19#. Note thatNg is proportional toR4, and therefore we
can define a dimensionless radius as

FIG. 1. Illustration of the governing equation for the nonuni-
form deposition.
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R*[RS 4pgDr

3kBT
D 1/45~Ng/2!1/4; ~4!

the factor 2 has been introduced to agree with the definition
given in @20,21#. For polystyrene beads in water atT5300
K, Dr545kg/m3 and thereforeR*.0.817R if R is ex-
pressed in micrometers. We will use these dimensionless
quantities in the following.

It is not possible to analytically solve the diffusion prob-
lem ~1! in the general situation, when several adsorbed par-
ticles are present. We will limit ourselves to obtaining ap-
proximate solutions in the presence of only one adsorbed
particle. To describe the general situation, then, we will in-
troduce a superposition approximation by assuming that the
adsorption probability at a given point depends only on the
position of the nearest particles, that is, those limiting the
free interval of the line to which the point belongs. One
expects this hypothesis to fail only for small gaps~and there-
fore only slightly affecting the layer structure! if gravity is
not too high. If gravity is strong as compared to diffusion,
when an incoming particle touches an adsorbed one, it is
expected to adsorb in its immediate vicinity and the super-
position hypothesis holds also for the smallest gaps.

According to the previous discussion, the solution of the
transport equation will lead to an adsorption model in which
particles are sequentially deposited onto an infinite line with
an adsorption probability density that depends on the gap in
which adsorption takes place. This means that the adsorbing
particle only significantly interacts with the particles that are
limiting this gap, and interactions with other particles are not
considered. The solution of the Smoluchowski equation~1!
gives the adsorption probability at any point of an available
interval. The problem of characterizing the structure of the
adsorbed monolayer can be studied starting from the kinetic
equation for the evolution of the free gaps. We summarize
the method below, and a more detailed discussion can be
found in @19#.

LetG(h,t) be the number density of gaps with lengthh at
time t and k(h8,h) the probability per unit length and per
unit time that the deposition of a particle in a gap of length
h8.1 produces gaps of lengthh andh82h21. The govern-
ing kinetic equation for the irreversible adsorption process is
@19# ~see Fig. 1!:

]G~h,t !

]t
52k0~h!G~h,t !12E

h11

`

dh8G~h8,t !k~h8,h!,

~5!

wherek0(h) is the total rate at which gaps of lengthh are
destroyed by the addition of a new particle:

k0~h!5E
0

h21

dh8k~h,h8!. ~6!

The gap distribution in the jamming state can be obtained
without knowing the detailed time evolution. From the bal-
ance equation~5! it is possible to derive a time-independent
equation for the total number density of gaps of lengthh that
have been created at any time along the process,n(h) @19#:

n~h!52E
h11

`

dh8p~h8,h!n~h8!, ~7!

wherep(h8,h) is the probability density that the first particle
arriving at an interval of lengthh8 creates two new free
intervals of lengthh andh82h21,

p~h8,h!5
k~h8,h!

k0~h8!
. ~8!

From the definition ofk0(h), Eq. ~6!, this function satisfies
the normalization

E
0

h821
p~h8,h!dh51. ~9!

In addition Eq.~7! must be supplemented by a normalization
condition forn(h). From the definition ofn(h) we have@19#

E
0

1

~11h!n~h!dh51. ~10!

A global measure of the particle packing is the coverage
defined as the relative length~area in two dimensions! of a
line of total lengthL covered byN particles of radiusR:

u5
2RN

L
. ~11!

The coverage increases monotonically~due to the irrevers-
ible nature of the process! until a saturation valueu` , when
no available space remains for adsorption of new particles. In
this situation only gaps withh<1 survive and the saturation
coverage can be obtained fromn(h) using the fact that the
particle number is equal to the number of gaps,

u`5E
0

1

n~h!dh. ~12!

Let us remark that Eq.~7! expresses the fact that the total
number of gaps of lengthh can be computed from the num-
ber of gaps with lengthh8.h11 and the probability
p(h8,h) of obtaining an interval of lengthh from an interval
of lengthh8. In principle, from Eqs.~7!–~12! it is possible to
obtain n(h) and the saturation coverageu` if p(h8,h) is
known. For each specific adsorption modelp(h8,h) must be
previously known.

In order to obtainp(h8,h), we must solve Eq.~1! with
two adsorbed particles limiting a gap of lengthh8 according
to the hypothesis assumed in the derivation of Eqs.~5!–~7!.
The accuracy of this ansatz is analyzed by means of Brown-
ian dynamics simulations in Sec. IV.

III. ADSORPTION PROBABILITY

In this section, we study the probability density of the
adsorption of a new particle on a line in which one adsorbed
sphere is already present. To find this probability we com-
pute approximate solutions of the Smoluchowski equation
~1! and we perform Brownian dynamics simulations. The
results obtained will be used in the next section to determine
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the structure and coverage of jammed lines.
To use the integral equation~7!, we need the probability

density p(h8,h) defined in ~8!, which can in principle be
obtained by solving the Smoluchowski equation~1! in pres-
ence of two preadsorbed particles separated by a center to
center distanceh811. However, the solution to this problem
is very difficult and therefore we have adopted a superposi-
tion hypothesis assuming that the joint effect of the two
preadsorbed particles can be obtained from a superposition
of the one-particle effects.

The one-particle adsorption problem is defined as follows:
the center of an adsorbed particle is fixed at the point
(x,z)5(0,0) and, at timet50, a new particle starts to move
from an initial point at a given distance from the surface
z0, with a random initial value ofx. The initial heightz0 is
immaterial and it will be assumed to be infinite. In the pres-
ence of a nonvanishing gravity field, the particle will be ad-
sorbed with probability one. We normalizeP(rW,t) in such a
way that the initial probability per unit length is equal to one.
Therefore, the probability density of adsorption at a point of
the adsorbing linez50 is

r~x!52E
0

`

Jz~x,z50,t !dt, ~13!

whereJz(x,z,t) is the z component of the probability flux
defined in Eq.~2!. Using the superposition hypothesis, we
write for the probability density of adsorption on a gap of
lengthh8:

p~h8,h!.N~h8!r~h11!r~h82h!, ~14!

whereN(h8) is determined by the normalization condition
~9!. To obtain r(x) we do not need to solve the time-
dependent Smoluchowski equation~1!. We only need the
time-integrated probability density,

c~rW !5E
0

`

dtP~rW,t !, ~15!

that obeys the equation@obtained by the integration of~1!
and using dimensionless units#

¹2c~rW !1Ng

]c~rW !

]z
50. ~16!

The boundary conditions satisfied byc are the perfect ad-
sorbing boundary condition on the linez50:

c~x,z50!50, ~17!

and the condition that the total probability flux coming from
z5` is 1 per unit length,

]c~rW !

]z
1Ngc~rW !→1, z→`. ~18!

Using Eq.~13! and the boundary condition~17!, r(x) can
be obtained fromc as

r~x!5
]c

]z U
z50

. ~19!

Another boundary condition is necessary to account for the
presence of the previously adsorbed particle in the origin of
coordinates. The hard sphere interaction between diffusing
and adsorbed particles implies no radial flux at the exclusion
sphere~of radius 2R) centered at the origin; therefore we
have~see Fig. 1!:

S ]c~r ,u!

]r D
r51

1Ngc~r51,u!sinu50. ~20!

The solutionc(rW) can be split into two parts,

c~rW !5c~0!~rW !1c~1!~rW !, ~21!

wherec (0) is the solution corresponding to a clean adsorp-
tion line, andc (1) reflects the presence of the adsorbed par-
ticle and must vanish at large distances. The solution of~16!
for c (0)(rW) with conditions~17!,~18! is

c~0!~x,z!5
1

Ng
~12e2Ngz!. ~22!

The probability density of adsorption in the presence of the
fixed particle is obtained using Eq.~19!:

r~x!5
]c~0!

]z U
z50

1
]c~1!

]z U
z50

[11r~1!, ~23!

wherer (1) is the deviation ofr from the uniform distribu-
tion. In the interior of the region excluded by the fixed par-
ticle (uxu,1), the total flux has to be zero and therefore
r (1)521. In the available region (uxu.1), r (1) gives the
local increase of the adsorption probability due to the par-
ticles that have been in contact with the adsorbed particle;
these particles are rejected in the RSA model, but here are
allowed to diffuse and will adsorb in the neighborhood of the
fixed particle. The presence of the fixed particle does not
change the total adsorption probability, so the integral of
r (1) over the entire line has to vanish. Therefore one has

E
1

`

r~1!dx51. ~24!

The equation and boundary conditions forc (1)(rW) can be
obtained by substitution of~21!,~22! in ~16!,~17!,~20!. It is
not possible to obtain a solution for general values ofNg ,
and different approaches have to be used in the limits of
small and large gravity.

A. Small gravity

We obtain a multipolar expansion forr(x) by solving the
equation forc (1)(rW) and substitution in~23!. To obtain
c (1)(rW) we use the Green function method, for the detailed
calculations see Appendix A. The~formally exact! result for
r(x) can be expressed in the form
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r~x!511
2

puxu (
n51

`

~2n21!w2n21

K2n21SNg

2
uxu D

K2n21SNg

2 D ,

uxu.1, ~25!

whereKn(x) is the Bessel function of third kind and the
coefficientsw2n21 satisfy the infinite linear system of Eqs.
~A18!,~A19!.

By substitution of the multipolar expression~25! in ~14!
we obtain the probability density of adsorption on a gap of
lengthh8 for givenNg . The normalization factorN(h8) is
obtained by numerical integration of~9!. For practical uses,
the series~25! must be truncated by using a finite number of
terms; the larger the gravitational Pe´clet numberNg is, the
larger the number of terms that have to be retained in~25! to
achieve a given precision. We recall that if we want to obtain
the saturation coverageu` we have to solve the integral
equation~7! with the kernelp(h8,h) given by Eqs.~14!,~25!.
If Ng is of order 1 we need only a few terms in the summa-
tion and the numerical solution of the integral equation is
possible, but for intermediate to high values ofNg we need a
very large number of terms and this expansion becomes use-
less. Therefore, it is necessary to obtain an asymptotic ex-
pression for large values ofNg to enable a description in the
entire range of variation ofNg . We will return to this ques-
tion in the next subsection.

We can see how the DRSA result@19# can be recovered
by taking theNg→0 limit in the previous expression. For
small Ng we need only one term in~25!, because
w2n215p/2d1n1O(Ng). Therefore,

r~x!511
1

uxu

K1SNg

2
uxu D

K1SNg

2 D 1O~Ng!'111/x2. ~26!

The last approximation has been obtained using the small
argument expansion of the Bessel functionK1(x).1/x. It
gives the known zero-gravity result@19# and we see now that
it gives an approximation for small gravity valid in the re-
gion x!2/Ng .

The first moment ofr (1) gives the mean distance to the
origin where particles touching the fixed one adsorb. From
Eq. ~25!, and using the well-known formula for the deriva-
tives of Bessel functions,Kn21(y)1Kn11(y)522Kn8(y)
we obtain:

^uxu&15E
1

`

r~1!~x!xdx5
2

p (
n51

`
~2n21!w2n21~Ng!

Ng

2
K2n21SNg

2 D
3~21!n11FK0SNg

2 D 12(
i52

n

~21! i21K2i22SNg

2 D G .
~27!

ForNg→0 only the first term of this sum has to be retained,
obtaining

^uxu&1'
2

Ng

K0~Ng/2!

K1~Ng/2!
' lnS 4Ng

D . ~28!

The mean distance increases without bound, as can be ex-
pected from the DRSA limit given by Eq.~26!.

B. Large gravity

For large values ofNg one can try to solve Eq.~16! by a
perturbative approach. In theNg→` limit the higher order
derivatives in Eq.~16! are negligible, and an approximate
equation is obtained retaining only the advective term. This
is equivalent to completely neglecting diffusion. The corre-
sponding solution satisfying the boundary condition at infin-
ity is c51/Ng , which does not verify the boundary condi-
tions atz50 and r51. The reason is that, no matter how
largeNg is, diffusion becomes important near the boundaries
of the system:c must change appreciably in a thinboundary
layer, and the corresponding derivatives are no longer negli-
gible in that layer.

The problem can be solved using singular perturbation
techniques as discussed in Appendix B. The result is that, for
large values ofNg , r (1)(x) scales to a function of the form

r~1!~x!'Ng
2/3f~1!@~x21!Ng

2/3#, ~29!

where functionf (1) is defined in the appendix. The mean
distance at which a particle that hits the preadsorbed one can
be adsorbed is therefore a quantity of orderNg

22/3

^uxu&15E
1

`

r~1!~x!xdx'11
A

Ng
2/3,

A5E
0

`

f~1!~j !jdj'1.106•••. ~30!

Obviously this distance decreases whenNg grows because
diffusion is weak and the particles adsorb closer. IfNg5`, a
particle hitting the fixed sphere will roll over it and be ad-
sorbed in its immediate vicinity~at uxu51) as corresponds to
the rolling mechanism of BD. IfNg is large but finite, diffu-
sion disturbs the deterministic motion and the new particle
can be adsorbed at some distance from the adsorbed one,
leaving between them a gap of sizeh;Ng

22/3.
We can give a simple reasoning supporting the scaling

given by Eq.~30! for large values ofNg . Particles falling
over the fixed particle will roll down over it and diffuse away
along a thin layer of thicknessd. This thickness can be esti-
mated from the condition that the radial probability flux due
to gravity, which is proportional toNgsinu, has to be com-
pensated with the diffusion flux that can be estimated as
d21. Therefore, in dimensionless units the boundary layer
thickness is

d~u!5
1

Ngsinu
. ~31!

This thickness increases when the particle approaches the
line u50. For small angles the surface of contact between
the particles becomes vertical, and the rolling picture is no
longer applicable. Instead, we can imagine that particles dif-
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fuse away from the fixed sphere at a certain angle,u0. This
separation is expected to occur when thex coordinate of the
center of the falling particle is beyond the region excluded
by the fixed one. Given Eq. ~31!, this implies
@11d(u0)#cosu0.1. Solving this equation for small angles,
we obtainu0.(2/Ng)

1/3. From this point the incident particle
falls a distancez0.(2/Ng)

1/3; the dimensionless time needed
to reach thez50 line is t0.z0 /Ng521/3Ng

24/3. Due to the
horizontal Brownian motion performed during the particles’
falling, one expects a horizontal deviation of order
dx.A2t0.(2/Ng)

2/3. This simple argument gives an expo-
nent and order of magnitude that agrees with the more exact
singular perturbation result~30!.

C. Brownian dynamics simulations

Computer simulation allows us to study the adsorption
probability for the whole range ofNg values and to verify the
validity of the results obtained in the previous subsections.
The algorithm developed here will be also used in the fol-
lowing section to study the structure of jammed lines.

We consider, as described in Sec. II, a suspension of
Brownian particles that is dilute enough to assume sequential
adsorption. One by one, the center of mass of a new particles
starts its motion at a fixed vertical positionz0 and at a hori-
zontal positionx0 chosen at random from a uniform distri-
bution. The value ofz0 does not affect the final adsorption
probability as far as in the initial position there is no possi-
bility of interaction with the adsorbed particles, that is,
z0.1. In our simulations we takez051 to minimize the
simulation time required.

The particle motion is discretized in time in the following
way. At every time stepDt the particle develops two mo-
tions performed sequentially in the simulations. It travels a
vertical distanceDzdet52NgDt ~in the dimensionless units
introduced in Sec. II! as corresponds to the sedimentation
under gravity and a stochastic displacementDrW rd as corre-
sponds to the Brownian motion. Therefore,

DrW52NgDt ẑW1DrW rd . ~32!

As is well known, the Brownian displacement in two dimen-
sions follows a normal distribution law with zero mean and
variance

^DrW rd
2 &54Dt. ~33!

After these two motions are generated, the simulation time is
increased byDt and the algorithm is repeated until the par-
ticle reaches the adsorbing linez50. The time stepDt is
chosen in such a way that ensures a typical displacement of
the particle to be of magnitudee which is small compared to
the particle diameter,e!1. The typical Brownian displace-
ment is of orderADt, so Dt<e2. On the other hand, the
deterministic displacement is2NgDt, soDt<e/Ng . There-
fore, we impose

Dt5min@e2,e/Ng#. ~34!

The value ofe is restricted by computer time limitations. All
the simulations reported in this paper were obtained with
e50.05.

To complete the simulation algorithm, we need a collision
rule to use in the case that an incoming particle touches the
preadsorbed one. We consider two collision rules, depending
on whether at the collision instant the particle is performing
a deterministic or a random displacement. If the collision
occurs during the deterministic displacement, we consider
that the incoming particle rolls over the preadsorbed one.
The collision rule for the Brownian motion is a perfect re-
flection of the particle trajectory, as in an elastic collision
with an infinitely massive particle. This rule is an approxi-
mation, valid if the Brownian displacement is sufficiently
small in relation to the radius of the boundary.

When the center of the particle reaches thez50 line, we
consider that the particle adsorbs at the contact point, which
is recorded. By iteration of this algorithm one obtains a his-
togram of adsorption frequencies as a function of the dis-
tance to the fixed particle.

For small values ofNg the results obtained by Brownian
dynamics simulations agree with the analytical results ob-
tained from the superposition approximation, Eq.~14!, and
the multipolar expansion, Eq.~25!, see Fig. 2. For large val-
ues ofNg the simulated distribution of adsorbed particles
approaches the scaling~29! predicted by the asymptotic ap-
proximation, see Fig. 4.

To obtain a simple analytic approximation in the interme-
diate to highNg regime, we fit the simulation results for
r(x) with an exponential distribution,

r~x!.11be2b~ uxu21!, uxu.1. ~35!

Although the asymptotic form of the adsorption probability
obtained in Appendix B is not exactly an exponential, this is
a simple fitting function. To determine the value ofb(Ng)
from the simulation results we impose the condition that the
thickness of the exponential has to be equal to the thickness

FIG. 2. Probability density of adsorption in presence of a pread-
sorbed particle as a function of distance forNg510. Solid line:
multipolar solution of transport equation~25! including five terms.
Dots: Brownian dynamic simulations.
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of r (1) obtained from the simulations. This is the condition
of maximum likelihood for an exponential distribution@28#,
and it implies

1

b
5^uxu&121. ~36!

For large values ofNg we expect, based on our asymptotic
argument ~30!, a dependence of the form
^uxu&1511aNg

22/3 To determine the constanta we com-
puted the mean distance of the adsorbed particles to the pre-
viously adsorbed one for differentNg numbers. The simula-
tions were performed forNg560,80,100,140,200,400,600
using 40 000 particles in each simulation and we obtained:

b5
Ng
2/3

a
, a51.08 . . . , ~37!

in agreement with the value 1.106 . . . obtained from the
asymptotic solution~30!. In Fig. 3 we compare this exponen-
tial fit, Eqs. ~35!, ~37!, with the results of the Brownian dy-
namic simulations forNg560.

Making use of the superposition hypothesis~14! and the
normalization condition~9! the probability density of adsorp-
tion in a gap can be expressed in the simple form:

p~h8,h!5
11be2bh1be2b~h82h21!

h81122e2b~h821!
. ~38!

Although the exponential distribution does not reproduce all
the details of the simulatedr(x), it approaches its main char-
acteristics, and the corresponding kernel~38! is simple
enough to allow a numeric evaluation of the integral equa-
tion ~7!.

IV. STRUCTURE OF THE ADSORBED LAYER

In this section we present results concerning the structure
of the adsorbed layer at jamming, characterized by the cov-
erageu` and the radial distribution functiong(r ). In Sec.
IV A we study the variation of the jamming coverage with
Ng and in Sec. IV B we analyze the local structure of
jammed surfaces described byg(r ). The results obtained by
numerical integration of Eq.~7! using ~38! or ~25! are com-
pared with simulation results.

The characteristics of the simulations are as follows. For
each value ofNg we have filled 1000 lines of length
L5100 and we have computed the mean number of particles
adsorbed at saturation. The statistical uncertainty on the cov-
erage~error bars! is estimated by a 95% confidence interval.
In principle, particle trajectories are simulated as long as the
surfaces are not entirely covered, but there exist some special
cases that demand more attention to avoid prohibitive com-
puter time. Consider a particle diffusing in the region be-
tween two preadsorbed ones, being the interval of the line
between these preadsorbed particles of length less than 1.
This particle only can adsorb if it obtains sufficient thermal
energy to overcome the gravitational force and the geometri-
cal barrier delimited by the preadsorbed particles. The time
needed to escape from these ‘‘geometrical barriers’’ grows
rapidly with Ng . For Ng;1 the particle can return to the
bulk after a small time and try to adsorb elsewhere. How-
ever, for sufficiently highNg this time becomes very large
~infinite in the case of BD!. In the practical situation, these
particles play no role because other particles, coming from
the bulk, will adsorb in the free gaps. There are different
ways in which this effect can be taken into account@25#. In
our simulations we adopt the following criteria: we choose a
maximum residence timet and, if a given particle remains
time t.t in a trap, it is eliminated from our simulations and
a new particle starts the motion following the previous rules.

FIG. 3. Probability density of adsorption in the presence of a
preadsorbed particle as a function of distance forNg560. Solid
line: exponential distribution~35!. Dots: Brownian dynamic simu-
lations.

FIG. 4. Logarithmic of the scaled probability density of adsorp-
tion in the presence of a preadsorbed particle. Simulation results for
Ng560 ~crosses! and Ng5300 ~triangles!. Continuous line: Nu-
merical solution of boundary layer equation.
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We take a different characteristic residence timet for each
Ng . For smallNg only a few particles are eliminated, but for
Ng@1 usually all particles that fall into intervals of length
h,1 are eliminated. ForR*<1 we taket515, t58 for
1,R*<2 andt51 for R*.2. We have checked that our
results are not sensible to increments oft. Finally, the last
stage is simulated in the following way. When only gaps
with lengthh8,3 survive, the initial positionx0 is chosen at
random between the centers of the particles limiting these
gaps, atz51 as for the other particles. When only targets of
lengthh8,2 remain~at most one particle can be adsorbed in
each! we fill these by using a RSA algorithm, i.e., by ran-
domly placing a particle in it without any transport process.
Only a few particles are deposited following these two last
rules and therefore the structure@characterized byg(r )# is
not significantly altered.

A. Coverage at the jamming limit

For adsorption on an infinite line, the saturation coverage
can only be a function of the unique dimensionless parameter
present in the transport equation, namely,Ng . It is more
convenient to represent the variation ofu` as a function of
the dimensionless radius,R* , defined in Eq.~4!, which gives
a more compact scale thanNg .

In Fig. 5 we show the variation ofu` with R* obtained by
simulation~crosses! and by solving the integral equation~7!
following the numerical method described in@19#. The solid
line in the regionR*,1.5 (Ng<10) has been obtained with
the kernel given by substitution of the multipolar expression
~25! truncated to five terms in Eq.~14!. We also solve, for all
values ofR* , the integral equation~7! with the kernel ob-
tained using the exponential approximation, Eq.~38!; the
result is represented by the solid line forR*.1.5 and by the

short dashed line forR*,1.5.
Three main regions can be recognized in the graph:
~1! R*<1: In this region the Brownian motion dominates.

The coverage varies slowly withR* and its value remains
close the DRSA value (u`.0.7506). For example, for the
R*51 case we obtainu`.0.7539 by means of simulations
and the numerical solution of the integral equation with the
multipolar kernel yieldsu`.0.7528. Simulation results
agree with the curve obtained using the multipolar solution
of transport equation. The curve obtained using the exponen-
tial kernel~38! gives smaller values foru` and in the limit of
vanishing gravity it approaches the RSA coverage
u`.0.747 59 . . . instead of the DRSA value.

~2! 1<R*<2.5: u` rises quickly withR* . In this region
the numerical solutions of the integral equation with the mul-
tipolar expression and with the exponential approximation
~38! are close. However, they show a slight discrepancy with
the simulation results that are systematically greater.

~3! R*>2.5 u` approaches slowly to the BD limit
(u`

BD50.808 65 . . . ), for example, if we takeR*510
(Ng5104) simulations giveu`50.807 . . . . Weobtain good
agreement between the simulations and the solution of~7!
using the exponential kernel~38!. A simple expression de-
scribes the asymptotic approach to the strong gravity limit,
Ng→`:

u`~Ng@1!.u`
BD20.2445Ng

22/3. ~39!

This expression is shown in Fig. 5 by dashed lines, and can
be obtained considering a simplified model. For large values
of Ng , the explicit form ofr (1) seems not to be of great
importance provided that it gives a value for the mean dis-
tance between the adsorbed particles and the preadsorbed
one in agreement with Eq.~30!. We can use instead of the
exact density, an approximation in whichr (1) is described by
a normalized step function of thickness 2^uxu&152ANg

22/3 in
agreement with~30!. This model is exactly solvable@24#,
giving ~39! in the limit Ng→`.

We have performed some control simulations to study the
origin of the slight discrepancy between the solid line and
simulations in region 2 on the graph. This effect is due to the
fact that for this range ofNg the probability density of ad-
sorption on a gap not only depends on the gap’s limiting
particles but can also be influenced by third neighbors. This
can be clearly shown by performing simulations with three
preadsorbed spheres and comparing the resulting adsorption
density probability with the result of the superposition ap-
proximation~14!. In Fig. 6 we show the adsorption probabil-
ity density in a situation with three pre-adsorbed spheres on
a line of lengthL520 andR*51. Between spheres one and
two there is a gap of lengthh852.5 and between spheres two
and three there is a small gap ofh850.05 that does not allow
particle adsorption therein. Simulation results show an asym-
metric adsorption probability, which clearly displays the ef-
fect of the third particle. The solution corresponding to the
superposition hypothesis~14!, which assumes that the ad-
sorption probability in one gap is given by the product of the
one-particle solutions corresponding to the particles at the
ends of the interval, shown in the continuous line, is sym-
metric. We also note that the simulation results fit well with
a distribution constructed as a product of the three one-

FIG. 5. Comparison between the saturation coverageu` as a
function ofR* obtained with several methods.~a! Dots: Brownian
dynamic simulation.~b! Solid line: numerical solution of the inte-
gral equation~7! using the multipolar solution~25! truncated to five
for R*,1.5 and the exponential fitting~35! for R*.1.5. ~c!
Dashed line: asymptotic expression~39!. ~d! Short dashed line: con-
tinuation of the numeric solution with exponential fitting~35! for
R*,1.5.
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particle solutions~dashed line!. For largerR* values, the
ansatz of independence of gaps holds, and the theoretical
expression shows no significant deviation from their simula-
tion counterpart.

B. Radial distribution function at the jamming limit

The radial distribution function,g(r ), reflects the correla-
tion existing between the adsorbed particles. The definition
adopted here is the usual one in statistical mechanics~see,
for instance,@26#!. In this subsection, we present histograms
of g(r ) in the jamming limit, obtained from the Brownian
dynamic simulations used in the previous subsection to de-
termineu` .

In Figs. 7 and 8 we showg(r ) for various values of
R* . At the jamming limit,g(r ) presents a logarithmic sin-
gularity atr51, like the RSA model. The simulation results,
however, are histograms that have a finite value at contact
representing an average ofg(r ) over a finite distance inter-
val. This contact value is nearly constant forR*<1 whereas
it grows withR* for R*.1.

ForR*<1 ourg(r ) are indistinguishable from the results
obtained for DRSA (R*50). Theg(r ) for R*51 is shown
in Fig. 7; note the disappearance of correlations between
particles after a few diameters. We recall that the variation of
u` with R* in this region is less than 1%, as we pointed out
in the previous section. Therefore, we can conclude that for
R*<1 the structure of the adsorbed layer is almost indepen-
dent of gravity.

In Fig. 8 we show the radial distribution function for
Ng530 (R*51.968) and forNg5240 (R*53.310). A
comparison between Figs. 7 and 8 shows that peaks in
g(r ) increase and are steeper asR* increases, revealing the
tendency of large particles to pack closer together than
smaller ones. This is because diffusion is a small effect for

large particles, and there is an increased probability of ad-
sorption close to already adsorbed particles. We can observe
that the smaller the effect of gravity~as measured byR* ),
the poorer the structure in the radial distribution function.
For 1<R*<2.5 not only the coverage changes rapidly with
R* ~as noted in Sec. IV A! but g(r ) does also. Note for
example that, forR*51.968, two secondary peaks are vis-
ible whereas only one is visible forR*51. ForR*.2.5 the
obtainedg(r ) are very close to the correlation function of the
ballistic deposition model, although thed function singulari-
ties present in the BD model atr51,2, . . . are smoothed
due to the effect of diffusion. Our model differs from other

FIG. 6. Probability density of adsorption in a line of length
40R in the presence of three adsorbed particles, at positions
x1513R, x2520R, x3522.1R. ~a! Dots: Brownian dynamic
simulations.~b! Solid line: superposition of the two one-particle
solutions corresponding to the particles limiting each gap.~c!
Dashed line: Superposition of the three one-particle solutions.

FIG. 7. Radial distribution functiong(r ) for R*51. Dots:
Brownian dynamic simulations. Solid line: Calculation ofg(r ) for
1<r<2 using the numerical solution of the integral equation~7!
for n(h).

FIG. 8. Simulation results for g(r ) corresponding to
R*51.968 (Ng530), squares andR*53.310 (Ng5240) displaced
four units, crosses. Solid line: Calculation ofg(r ) for 1<r<2 and
Ng530 using the numerical solution of the integral equation~7!.
Dashed line: the same forNg5240.
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generalized models@16# in which thed funciton singularities
appear only forR*5`.

At the jamming limitg(r ) cannot be obtained completely
using the formalism presented in Sec. II, but it can be ob-
tained for 1<r<2 noting thatn(h) is equal tog(h11) for
0<h<1 except by the normalization. By the definition of
these functions one has

n~h!5u`
2g~h11!, h,1. ~40!

The numeric solution of Eq.~7! performed in the previous
subsection to findu` also gives the gap densityn(h). The
result agrees with the radial distribution function obtained by
simulation according to Eq.~40!, as shown in Fig. 7 for
R*51 and in Fig. 8 forR*51.968, 3.310.

V. CONCLUSIONS

A ~111!-dimensional adsorption model has been ana-
lyzed to investigate the influence of transport mechanisms
~diffusion and sedimentation! on the structure of irreversibly
adsorbed monolayers of particles. We have studied a simpli-
fied model in which hard spheres suspended in a two-
dimensional fluid adsorb onto a line. The results may be
relevant to understand the more realistic case of adsorption
on a surface, if the suggested scaling behavior between the
~111!- and ~211!-dimensional cases holds@21#. An argu-
ment in favor of this hypothesis for large gravity is presented
below.

By means of Brownian dynamic simulations we have ob-
tained the saturation coverage and the radial distribution
function g(r ) for different values of the gravity number
Ng . These results have been compared with those obtained
from an approximate analytic formalism: first we analyze the
probability density of adsorption onto a gap with the help of
the transport equation and Brownian dynamic simulations;
once we know this probability distribution, the saturation
coverageu`(R* ) and the density of gaps at the jamming
limit can be obtained numerically by using an integral equa-
tion developed in a previous paper@19#.

We have introduced a superposition hypothesis, assuming
that the adsorption probability at a given point depends only
on the limiting particles of the gap in which the particle
adsorbs. As showed by simulations, this hypothesis fails
when the gap is small and 1<R*<2, but this affectsu`

only slightly.
The probability density of adsorption in the presence of

one particle was obtained by solving the transport equation
as a multipolar expansion. This expansion is useful for low
to intermediateNg values, but not for highNg numbers. In
the largeNg regime we have shown, using singular pertur-
bation techniques, that the probability density of adsorption
r (1)(x) has the scaling form~29!. The simulations show that
this scaling is approximately satisfied even for moderate val-
ues ofNg . Instead of the exact scaling function, we have
useda simple exponential function for the numerical compu-
tations that fits the simulation results. The corresponding nu-
meric solution of the integral equation~7! agree well with
the simulations even forR*.1.

The properties of the adsorbed layers at jamming are as
follows. ForR*<1, u`(R* ) varies less than 1% andg(r ) is

close to the DRSA (R*50) form. Therefore, the effect of
gravity is nearly negligible in this regime. ForR*>1,
u`(R* ) grows quickly withNg andg(r ) displays peaks that
emerge more significantly. The peaks ing(r ) increase and
are steeper whenR* grows reflecting the tendency of large
particles to pack closer than smaller ones. ForR*>2.5 the
saturation coverage slowly approaches the BD value follow-
ing the asymptotic expression~39!. In this regimeg(r ) is
very close to its BD counterpart, although in our model
g(r ) takes finite values atr51,2, . . . due to the effect of
diffusion instead of the delta function singularities of the BD
case.

It can be easily verified that the same perturbation tech-
niques used in Appendix B can be applied to the~211!-
dimensional case, leading to the scaling given in Eq.~29!
with the same functionf (1). This fact provides a physical
basis, at least for large gravity, for the scaling ofu`(R* ) in
a common curve for the 211 and 111 cases. In the asymp-
totic limit the relevant property of the adsorption probability
is its thickness, and one can replacer (1) with a step function
with the same thickness,D5kNg

22/3 We expect that the jam-
ming coverage approaches the ballistic limit linearly inD,
and therefore

u`~Ng@1!

u`
BD .12adNg

22/3, ~41!

wheread is a constant that depends on the dimension of the
system. Thus, with an adequate change of scale the curves of
u`(Ng)/u`

BD in 111 and 211 dimensions are coincident, at
least for large values ofNg . This scaling has been observed
in simulations and seems to apply for all values ofNg @21#.

In a more realistic extension of our model, hydrodynamic
interactions must be considered in the transport equation, but
we expect that their effect is small. In the DRSA case, hy-
drodynamic interactions@22# make the adsorption probabil-
ity nearly uniform due to the enhanced mobility parallel to
the surface and therefore the coverage is expected to be close
to the RSA case. In the case of BD it has been shown@23#
that while the jamming coverage does not change signifi-
cantly, the local structure is strongly affected by the hydro-
dynamic interactions.

Note added in proof. The authors would like to note that a
similar problem has been studied by Ho Suk Choi~Ph.D.
thesis, Purdue University, 1995!. In this work the transport
equation of a sphere diffusing in a gravitational field was
solved numerically. The results are in essential agreement
with those of our paper~Sec. III!. The authors believe this
fact should be properly represented.
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APPENDIX A: MULTIPOLAR SOLUTION
OF TRANSPORT EQUATION

In this appendix we obtainc (1)(rW) using the Green func-
tion method. The equation and boundary conditions for
c (1)(rW) can be obtained by substitution of~21!,~22! in
~16!,~17!,~20!. If we write c (1)(rW)5 f (rW)e2Ngz/2, the equa-
tion for f (r ) is

¹2f ~rW !5
Ng
2

4
f ~rW !, ~A1!

with boundary conditions:

f ~x,z50!50, ~A2!

] f ~rW !

]r
U
r51

1
Ng

2
sinu f ~r51,u!52sinue~Ng/2!sinu. ~A3!

The Green function corresponding to~A1! and satisfying the
boundary condition~A2!, G(rW,rW8), is defined by

¹2G~rW,rW8!2
Ng
2

4
G~rW,rW8!5d~rW2rW8!, ~A4!

G~x,z50,rW8!50. ~A5!

Using the method of images, it is easy to obtain the solution
to this equation, that can be expressed using Bessel functions
of the third kind:

G~rW,rW8!5
21

2p FK0SNg

2
urW2rW8u D2K0SNg

2
urW2rW* u D G ,

rW5~x,z!, rW85~x8,z8!, rW*5~x8,2z8!. ~A6!

We can obtain an integral equation forf (rW) making use of
the properties of the Green function. If we multiply Eq.~A1!

by G(rW,rW8) and Eq.~A4! by 2 f (rW) and add the results, we
obtain:

G~rW,rW8!¹2f ~rW !2 f ~rW !¹2G~rW,rW8!52 f ~rW !d~rW2rW8!.
~A7!

Now, integrating~A7! over the whole volumeV, limited by
the adsorbing line atz50, the excluded volume of the pread-
sorbed particle and a closing surfaceS, and then using the
Stokes theorem, we obtain:

f ~rW8!52E
V
dV@G~rW,rW8!¹2f ~rW !2 f ~rW !¹2G~rW,rW8!#

52E dSW @G~rW,rW8!¹W f ~rW !#1E dSW @ f ~rW !¹W G~rW,rW8!#.

~A8!

If the surfaceS goes to infinity and we use the boundary
conditions for f andG(rW,rW8), the only contribution to the
surface integrals comes from the excluded area of the pread-
sorbed particle. Therefore, usingdS5Rdu5du we obtain:

f ~rW8!5E
0

p

duFG~rW,rW8!
] f

]r
2 f ~rW !

]G

]r G
r51

,

r 8.1. ~A9!

To take profit of this expression, we use the Fourier ex-
pansion of the Green function~A6! that can be obtained us-
ing a well-known theorem for the Bessel functions@29#:

K0~bAr 121r 2
222r 1r 2cosf!

5 (
m52`

`

Km~br 2!I m~br 1!cosmf,

r 2>r 1 . ~A10!

Use of ~A10! in ~A6! yields:

G~rW,rW8!5
22

p (
n51

`

KnSNg

2
r 8D I nSNg

2
r D sin~nu!sin~nu8!,

r<r 8, ~A11!

x5rcosu, z5rsinu, x85r 8cosu8, z85r 8sinu8.

Substitution of this expression in Eq.~A9! yields

f ~rW8!52
2

p (
n51

`

KnSNg

2
r 8D I nSNg

2 D sin~nu8!

3E
0

p

dusin~nu!
] f

]r r511
2

p (
n51

`

KnSNg

2
r 8D

3
Ng

4 F I n11SNg

2 D1I n21SNg

2 D Gsin~nu8!

3E
0

p

du f ~r

51,u!sin~nu!. ~A12!

Now, we note that our problem is symmetric under the
changex→p2x, and, therefore, only the integrals with odd
n contribute. In addition, if we apply the boundary condition
of null radial flux at the excluded area defined by the pread-
sorbed sphere~A2! and definew(u)5 f (r51,u) we obtain

f ~rW8!5
2

p (
n51

`

K2n21SNg

2
r 8D sin~2n21!u8E

0

p

du

3sin~2n21!uS sinue~Ng/2!sinuI 2n21SNg

2 D
1H Ng

2
I 2n21SNg

2 D sinu1
Ng

4 F I 2n22SNg

2 D
1I 2nSNg

2 D G J w~u! D . ~A13!
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If we define the Fourier-sine transforms:

g2n21~Ng!5E
0

p

du sin~2n21!u sinue~Ng/2!sinu,

~A14!

G2n21~Ng!5E
0

p

du sin~2n21!u sinuw~u!, ~A15!

w2n21~Ng!5E
0

p

du sin~2n21!uw~u!, ~A16!

finally one obtains forf (r ,u) ~we omit 8 for simplicity!:

f ~r ,u!5
2

p (
n51

`

w2n21

K2n21SNg

2
r D

K2n21SNg

2 D sin~2n21!u.

~A17!

By substitution ofr51 in ~A13! and making use of defini-
tions ~A14–A16! we obtain the following equations for the
coefficientsw2n21:

w2n215K2n21SNg

2 D I 2n21SNg

2 D

3

g2n211
Ng

2
G2n21

12
Ng

4
K2n21SNg

2 D F I 2n22SNg

2 D1I 2nSNg

2 D G ,
~A18!

G2n215
2

p (
m51

`
24~2m21!~2n21!

~2n12m23!~2n12m21!~2n22m11!~2n22m21!
w2m21 . ~A19!

The probability density for the adsorption of a particle can be
obtained in a form of a multipolar expansion by using Eq.
~A17! with the definition of f (r ), c (1)(rW)5 f (rW)e2Ngz/2 in
definitions~21!, ~23!:

r~x!511
2

puxu (
n51

`

~2n21!w2n21

K2n21SNg

2
uxu D

K2n21SNg

2 D ,

uxu.1. ~A20!

For small values of Ng , one has g2n215(p/2)dn1
1O(Ng), and all the terms in Eq.~A20! except the first
vanish to orderO(Ng), giving w2n215(p/2)dn11O(Ng).

APPENDIX B: BOUNDARY LAYER SOLUTION
OF THE TRANSPORT EQUATION

Our aim in this appendix is to obtain an approximate so-
lution of the transport equation~16! valid for large values of
Ng . WhenNg is very large, the Laplacian term in the trans-
port equation becomes negligible in the entire domain except
near the boundaries, where the value of the derivatives can
be large. We have then a singular perturbation problem@30#.
An approximate solution in this limit can be reached by
matching different approximations in the bulk and in the
boundary layers that can appear near the boundaries.

The first approximation to theouter solutioncan be ob-
tained neglecting the Laplacian term in the transport equa-
tion. The resulting equation is simply]c/]z50, and the

solution satisfying the boundary condition at infinity Eq.~17!
is a constant,

cout51/Ng . ~B1!

Note that this is an exact solution of the transport equation,
and therefore the expansion of the outer solution ends here.

This outer solution does not match the boundary condi-
tions atz50 andr51, and therefore some boundary layers
have to be introduced.

~i!. A first boundary layer, appears near the linez50,
where the value ofc has to change from the outer value,
1/Ng , to the value imposed by the boundary condition, 0.
Derivatives with respect toz become large, and the term
]2c/]z2 in the Laplacian is no longer negligible. The bound-
ary layer thicknesse can be estimated from the condition
that the derivatives with respect toz are the dominant terms
in the transport equation and have the same order. This im-
plies e5O(Ng

21). Therefore, the first approximation to the
inner solutionin this region is the solution of

]2c in
I

]z2
1Ng

]c in
I

]z
50. ~B2!

The solution satisfying the boundary condition atz50 and
matching the outer solution forz@Ng

21 is

c in
I 5

1

Ng
~12e2Ngz!. ~B3!

This is also an exact solution of the transport equation, so the
expansion of the inner solution in this boundary layer ends
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here. In the absence of any adsorbed particle, no additional
boundary layers are present and, in fact, we have reproduced
the exact solution for an empty line given by Eq.~22!.

~ii !. In the presence of one particle inr50, a new bound-
ary layer appears near the boundary of that particle,r51.
The functionc has to change in a small boundary of thick-
nessd from the outer form~B1!, in which there is a radial
probability flux, to a form in which that flux vanishes at
r51. The order of magnitude of the different terms of the
transport equation can be easily evaluated by writing it in
polar coordinates, and considering that each radial derivative
introduces a factorO(d21):

]2c

]r 2
1
1

r

]c

]r
1
1

r 2
]2c

]u2
1Ngsinu

]c

]r
1Ng

cosu

r

]c

]u
50.

O~d22! O~d21! O~1! O~Ngd
21! O~Ng! ~B4!

The first and fourth terms of this equation are the largest
whenNg→`, and the appropriatedistinguished limitis ob-
tained when they have the same order of magnitude, that is,
when d5O(Ng

21). To obtain the solution in this boundary
layer, we define the scaled inner variableh[Ng(r21), and
we expand the functionc in

II in successive approximations,
c in
II 5c (1)1c (2)1•••. The first approximation to the inner

solution is then, retaining the terms of orderO(Ng
2),

]2c~1!

]h2 1sinu
]c~1!

]h
50. ~B5!

The boundary conditions forc (1) cause the normal flux to
vanish ath50 and the solution has to match the outer solu-
tion for h→`. The first integral of Eq.~B5! is immediate,

]c~1!

]h
1sinuc~1!5C~u!. ~B6!

The term on the right-hand side is an integration constant
that, in principle, can be an arbitrary function ofu. However,
the left hand side is proportional to the radial flux and, by the
boundary condition ath50, the integration constant must
vanish. We have, then, a homogeneous first-order equation
for c (1), whose general solution is

c~1!5A~u!e2h sinu. ~B7!

It is not possible to obtain the ‘‘integration constant’’A(u)
by direct matching with the outer solution, because this first
approximation to the inner solution vanishes whenh→`. As
we will see, the reason for this is that the first approximation
c (1) is a quantity of orderO(1), whereas the outer solution
is O(Ng

21). Matching is possible only for the second-order
approximation,c (2), which isO(Ng

21). Retaining terms of
orderO(Ng) in the transport equation we obtain the equation
satisfied byc (2),

]2c~2!

]h2 1sinu
]c~2!

]h
52Ng

21S ]c~1!

]h
1cosu

]c~1!

]u D
52Ng

21cosue2hsinu

3@A8~u!2A~u!~h cosu1tanu!#.

~B8!

The first integral satisfying the boundary condition ath50
is

]c~2!

]h
1sinuc~2!52Ng

21cosuE
0

h
dh8e2h8sinu

3@A8~u!2A~u!~h8cosu1tanu!#.

~B9!

It is not necessary to go beyond this calculation to obtain the
matching condition with the outer solution. It suffices to rec-
ognize that the left-hand side of the last equation is2Ng

21

times the radial probability flux, and this quantity has to
match whenh→` with the outer value for this flux, which
from ~B1! is simply2sinu. We obtain the condition:

2sinu5cosuHA8~u!2A~u!tanu

sinu
2
A~u!cosu

sin2u J .
~B10!

This is a differential equation for the unknown function
A(u), whose general solution isA(u)5sinu1Btanu. The ar-
bitrary constantB has to vanish in order to obtain a finite
probability density foru5p/2. This completely determines
the first approximation toc in

II

However, this approximate solution is not valid for all
values of the angleu. The reason is that the boundary layer
thickness isd5(Ngsinu)

21, as is evident from Eq.~B7!, and
it increases with decreasing angle. Therefore, the boundary
layer approximation breaks down whenu→0. It is easy to
verify that the order of magnitude of the last term on the
left-hand side of Eq.~B4!, which has been neglected, be-
comes comparable to the retained terms when
u5O(Ng

21/3). Therefore, the range of validity of the solution
obtained is

c in
II 5sinue2h sinu1O~Ng

21!, u@Ng
21/3. ~B11!

~iii !. For values of the angleu5O(Ng
21/3), the last term in

Eq. ~B4! has to be included in the boundary layer equation
together with the two terms retained in the previous approxi-
mation. All these terms have the same order of magnitude
when the radial thickness of the boundary layer is
d5O(Ng

22/3). These range of values for the angle and the
radius define a new boundary layer; we introduce new ap-
propriately scaled variables,j5(r21)Ng

2/3 and t5uNg
1/3.

We introduce also an asymptotic expansion of the probabil-
ity density,c in

III 5m1(Ng)f
(1)1m2(Ng)f

(2)1•••, where the
coefficientsm i(Ng) are infinitesimals of increasing order.
The equation forf (1) is, retaining the terms of larger order
in Ng :
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]f~1!

]t
1

]2f~1!

]j2
1t

]f~1!

]j
50. ~B12!

We now have a parabolic equation that has the form of a
time-reversed diffusion equation with a drift proportional to
the ‘‘time’’ t. For t→`, the solution has to match with the
previous boundary layer solutionc in

II valid for large values
of the angle. It is easy to see that this implies

m1~Ng!5Ng
21/3,

f~1!→te2tj, t→1`. ~B13!

That is, for large values oft we recover a normalized ‘‘Bolt-
zmann distribution,’’ corresponding to neglecting thet de-
rivative in Eq. ~B12!. This condition, together with the
boundary of condition of zero normal flux atj50,
]f (1)/]j1tf (1)50, completely specifies the function
f (1). Furthermore, the condition of zero flux atj50, implies
that the integral off (1) with respect toj is a conserved
quantity, and as a consequence of Eq.~B13! it has value 1:

E
0

`

f~1!~j,t!dj51. ~B14!

We have not been able to analytically solve Eq.~B12!.
However, it is easy to obtain a numeric solution satisfying
the cited boundary conditions. The solution is a positive nor-
malized function, vanishing exponentially forj→`, and
with a well-defined limit whent→0, f (1)(j,t50) ~see
Fig. 4!. An important quantity is its first moment,A
5*0

`djjf (1)(j)51.106 . . . .
The adsorbing boundary condition atz50, however, is

still not satisfied by this approximation. From the previous
solution we have limt→0c5Ng

21/3f (1)(j,0) and this result,
obtained from an approximation valid foru5O(Ng

21/3), has
to be modified to agree with the boundary condition

c(u50)50. Indeed, whenu5O(Ng
21), we are in the same

situation as in the boundary layer (I ): the derivatives with
respect tou are of ordere5O(Ng

21), and the boundary layer
equation is Eq.~B2!. The range of validity of the boundary
layer approximationc in

III is therefore

c in
III 5Ng

21/3f~1!~j,t!, Ng
21!u!1. ~B15!

~iv!. A new boundary layer is needed foru5O(Ng
21), in

which the approximate transport equation is Eq.~B2!. The
solution of that equation satisfying the boundary condition at
u50 is

c in
IV.C~j!~12e2Ngu!. ~B16!

The arbitrary functionC(j) is obtained by imposing match-
ing with the approximate solution in the previous boundary
layerc in

(III ) We obtain

c in
IV~r ,u!.Ng

21/3f~1!~j,t50!~12e2Ngu!, u!Ng
21/3.

~B17!

This function gives the correction to the probability flux,
originated from the presence of the fixed particle,r (1):

r~1!~r ![
]c

]z U
z50

.Ng
2/3f~1!~j,t50!, j5~r21!Ng

2/3.

~B18!

Therefore, the numerical solution of Eq.~B12! specifies
the final probability distribution. One important conclusion is
that, for large values ofNg , r (1) scales to a function of the
form Ng

2/3f (1)@(r21)Ng
2/3#. It is easy to verify, using Eq.

~B14!, that this distribution is normalized,

E
1

`

r~1!~r !dr5E
0

`

f~1!~j,t50!dj51. ~B19!
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