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Irreversible adsorption of particles after diffusing in a gravitational field
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In this paper we analyze the influence of transport mechanfdiffasion and sedimentatigron the struc-
ture of monolayers of particles irreversibly adsorbed on a line. We focus our attention on the dependence of the
radial distribution functiorg(r) and the saturation coveragg on the gravitational Reet numbem, . First,
we study the probability density of adsorption onto an available interval using approximate solutions of the
transport equation and computer simulations. Combining our results with an approximate general formalism,
we can obtain values d@f,, and the gap density, which agree with our simulations. We also show that, for large
gravity, the coveragé.. approaches the ballistic limit following a power law ¥y that is independent of the
number of dimensions, as has been observed in simulations R. Ezzeddine, P. Schaaf, J. C. Voegel, and B.
Senger, Phys. Rev. &1, 6286(1995. [S1063-651%96)10610-3

PACS numbg(s): 05.60:+w, 82.70.Dd, 68.10.Jy

[. INTRODUCTION Clearly, the RSA model does not consider the transport of
the particles toward the surface. Instead it assumes that new
The adsorption of particles of colloidal siZsmacromol-  particles arrive to the neighborhood of the surface with uni-
ecules, latexes, bacteria, ¢tfrom fluid suspensions to solid form probability, and then they interact with the partially
surfaces is a complex phenomenon of great interest. Mucbovered surface on the basis of excluded volume interac-
effort has been devoted to the study of the mechanisms irtions. More realistic models must consider the different
volved in this proces$l]. A complete description should transport mechanisms that are present in colloidal systems:
consider the different steps involve@) transport of the par-  diffusion, gravity, externally imposed flows, and hydrody-
ticles from the bulk suspension toward the interfadg;in- namic and double layer forcg&3].
teraction with the substraténcluding the layer formed by For large enough particles suspended in a fluid at rest,
the previously adsorbed particjesiii ) surface diffusion and gravity is the dominant force: large particles sediment fol-
desorption. For many colloidal particles, for example, somdowing a ballistic trajectory toward the surface. This situation
proteins[2,3] or latexes[4,5], neither surface diffusion nor is described by the ballistic depositigBD) model[14,15,
desorption is observed in the time scale accessible to expelih which step(b) of the RSA model is modified in the fol-
ments: the particles remain immobilized after adsorptionJowing way: if the incoming particle overlaps a preadsorbed
and the process can be considered irreversible. Consene, then it rolls down the steepest descent path until either it
quently, nonequilibrium configurations are generated andieaches the surface and is adsorbed, or it is trapped in a
when the surface coverage attains a given valyamaning  cavity over other particles, and is rejected. This model is
configuration is obtained, with no space available on the surexactly solvable for one-dimensional surfadd$,16, and
face for the adsorption of new particles. extensive approximate studies have been realized for two-
The simplest model that attempts to describe these irredimensional surfaced4].
versible adsorption phenomena, is the random sequential ad- In the opposite limit of very small particles, Brownian
sorption (RSA) model [6-12. In this model, particles are motion becomes the dominant transport mechanism. A
sequentially added to the surface by iteration of the follow-model describing this situation is the diffusion REBRSA)
ing algorithm:(a) a random position is selected for the addi- model[17]: the initial position of each particle is randomly
tion of a new particle(b) if the new particle overlaps any chosen in a plane at a given distance of the surface, and its
particle already adsorbed on the surface, the adsorption afrajectory is simulated by using a Brownian dynamic algo-
tempt is rejected(c) if the new particle does not overlap any rithm [18]; if the particle touches the surface it adsorbs irre-
other particle, then the adsorption attempt is accefithdhe  versibly. Furthermore, to avoid unbound Brownian trajecto-
time necessary for the adsorption of the particle is proporries, particles arriving at points too far from the surface are
tional to the number of adsorption attempts. The RSA modetejected. The simulation of this model is much more expen-
has been extensively studied in both discrete and continuousve computationally than the RSA model and, furthermore,
surfaceq 6]. Exact results for the kinetics, jamming cover- it admits no exact solution even for one-dimensional sur-
age, and distribution functions can be obtained analyticallffaces. Surprisingly, the jammed state obtained is very similar
for one-dimensional surfac¢40]; for two-dimensional sur- to the jammed state obtained with the RSA model: very
faces one has to use approximate methdds12 or com-  small differences appear in one-dimensional surfaces, while
puter simulation$9]. in two-dimensional surfaces the jamming states obtained
from both models are indistinguishable with the precision of
the simulations. Analytically, good approximations can be
*Electronic address: jordi@ulises.uab.es obtained for jammed one-dimensional surfaces from ap-
TElectronic address: javier@ulises.uab.es proximate solutions of the diffusion equatifh9.
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For particles of general size both, the Brownian motion
and gravity have to be considered. Simulation studies have
been done including the gravity force in the Brownian dy-
namics algorithnj20]. The results show how the properties P
characterizing the surface structure change smoothly with in- o
creasing gravity, from the DRSA behavior in the limit of
small gravity to the ballistic values in the limit of large grav-
ity. One interesting result is that the dependence of the jam-
ming coverage on the size of the particles seems to scale to a W
common curve both for one- and two-dimensional surfaces i : i .
. . . FIG. 1. lllustration of the governing equation for the nonuni-
[21]. Therefore, the information obtained from one- o
. . .form deposition.
dimensional surfaces can be relevant also to the more realis-
tic two-dimensional ones.

.........

the transport problem for a single particle near the surface in

Finally, any realistic model has to include the effect of thethe presence of the previously adsorbed particles has to be
hydrodynamic interactiongHl), which become important solved; then, the evolution of the adsorbed phase can be

when the particles are in the neighborhood of the surface. " : ;
Simulation result422,23 suggest that the effect of HI on studied fr9m the obtained a.u?lsorpnor.] prob§b|I|t|es.
global averaged quantities is small although they should be Let P(r,t) be the probability density to find the center of
taken into account for a fine analysis of the local structure. Itmass of a particle at the pointat timet; under the condi-
can be useful therefore to study simpler models that negledtons of negligible inertia and small relaxation time, the
hydrodynamic interactions but can be analytically solved. transport of the particle to the adsorbing line is governed by
Our aim in this paper is to develop an analytic approxi-the Smoluchowski equation,
mation to the description of the adsorption of particles on
one-dimensional surfaces considering the gravity force and aP(1 )
Brownian motion and neglecting hydrodynamic interactions. pm
To do this, we first need solutions for the transport equation
in the presence of a flat adsorbing surface and many particles | ) i ) o
fixed on it. These solutions can be obtained with a sufficient P€ing the sedimentation velocity a the diffusion co-
approximation when only one particle is fixed on the surface€fficient assumed constant. The probability flux is given by
Then, a superposition approximation has to be done to study ~
surfaces at finite coverage; this superpo_sition has shown J(r,t)=—DVP(r,t)—uP(r 1)z )
good results for the DRSA mod¢l9], and in the present
model it also gives good agreement with the simulations. The hard-particle interaction between bulk particles and ad-

In Sep. I we describe the model| anq the analytical tOOISsorbed ones is considered in the boundary conditions for Eq.
we use in detail. In Sec. Il the one-particle effects are stud

ied by approximate solution of the transport equation an 1) r?y assluming th?t t:f raldigll lpro'baabigity ;qu mugt V%nizh
computer simulation. The results of this section allow us to t';ti(;:;(c Au;s It?]g SaL:jrs?)(r(bilr?g-; Ii)n ee\,:,rglﬁp o)s/et r’)ee?freeslysg:js%rb-
obtain an approximate description of the adsorbed phase th g bouﬁdary conditionsR=0). Furthermore, we assume
is compared with simulations in Sec. IV. Finally, Appen- . L - ) " .
dixes A and B show how the approximate solutions of thetn€ initial conditionP(r,t=0)=6(z—2), z, being the ini-
transport equation can be obtained. tial dl-stance. of the center qf the particle to the line; the value
of z; is not important provided that,>2R.
Equation(1) with its boundary conditions can be made
Il. DESCRIPTION OF THE MODEL dimensionless by measuring distances in units of the diam-

, eter 2R of the particles and time in units of the characteristic
We want to study a simple model that may allow us t0yitsion time 7qi11=4R2/D. Thus, the solution of1) de-

understand the effect on the structure of the adsorbed Iayer(%fendS on a single dimensionless parameter, the gravitational

two. simple' transport mechanisms, n.amely, diffusion an wlet numbe, defined as the quotient betweeg; and
sedimentation. We consider an adsorbing surfage=& and o characteristic sedimentation ting,= 2R/u,

a semi-infinite fluid in the regiom>0. Spherical particles of
radiusR suspended in the fluid diffuse in th€Z plane and 4
sediment due to the effect of a uniform gravitational field in N = gt 2Ru_ 87R gAp’
the Z direction. If the center of a new particle arrives at the 9 74ee D 3kgT
z=0 line, it is adsorbed irreversibly at the contact point. We
assume that the bulk concentration of particles is so smaWhere g is the acceleration of gravitydp the difference
that interactions between them are negligible. Consequentiygetween the densities of the particles and the fluid, tiie
each particle adsorbs independently of the other particles iabsolute temperature. N> 1 the motion of the particles is
the suspension, and the process can be considesztigen- deterministic and we recover the ballistic deposition model
tial. However, the concentration becomes large at the surdenoted in the following by B whereas ifNy<1 Brown-
face, where adsorbed particles accumulate and interact vian motion predominates and we recover the DRSA model
excluded volume effects with incoming particles. [19]. Note thatN, is proportional toR*, and therefore we
This adsorption problem can be studied in two steps: firstcan define a dimensionless radius as

=V .[DVP(F,t)+uP(f.t)Z], 1)

)
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47gAp

1/4 o0
W) =(Ng/2)"% (4) n(h)=2J+1dh’p(h’,h)n(h'), Y

R*ER(

h
the factor 2 has been introduced to agree with the definitio'n€rep(h’.h) is the probability density that the first particle
given in[20,21. For polystyrene beads in water =300  &Mving at an interval of lengtth’ creates two new free
K, Ap=45kg/m® and thereforeR* =0.81R if R is ex- Intervals of length andh’—h—1,

pressed in micrometers. We will use these dimensionless k(h’,h)
guantities in the following. p(h’,h)=—_—=. )
It is not possible to analytically solve the diffusion prob- ko(h")

lem (1) in the general situation, when several adsorbed par- . . . i
ticles are pres?ent. We will limit ourselves to obtaining gp_From the o!eﬂr_u'uon oko(h). Eq. (6), this function satisfies
proximate solutions in the presence of only one adsorbewe normalization

particle. To describe the general situation, then, we will in- b1

troduce a superposition approximation by assuming that the J’ p(h’,h)ydh=1. 9
adsorption probability at a given point depends only on the 0

position of the nearest particles, that is, those limiting the . L
free interval of the line to which the point belongs. One !N @ddition Eq.(7) must be supplemented by a normalization

expects this hypothesis to fail only for small gdpad there- condition forn(h). From the definition oh(h) we have 19]

fore only slightly affecting the layer structurd gravity is 1

not too high. If gravity is strong as compared to diffusion, f (1+h)n(h)dh=1. (10

when an incoming particle touches an adsorbed one, it is 0

expected to adsorb in its immediate vicinity and the super- . o

position hypothesis holds also for the smallest gaps. A global measure of the particle packing is the coverage
According to the previous discussion, the solution of thedefined as the relative lengtarea in two dimensionsf a

transport equation will lead to an adsorption model in whichlin€ Of total lengthL covered byN particles of radius:

particles are sequentially deposited onto an infinite line with SRN

an adsorption probability density that depends on the gap in g= —— . (11)

which adsorption takes place. This means that the adsorbing L

particle only significantly interacts with the particles that are ) i _

limiting this gap, and interactions with other particles are not! "€ coverage increases monotonicdliipe to the irrevers-

considered. The solution of the Smoluchowski equatipn  Ple nature of the processintil a saturation valu@.,, when

gives the adsorption probability at any point of an availableN© @vailable space remains for adsorption of new particles. In

interval. The problem of characterizing the structure of thetiS Situation only gaps with<1 survive and the saturation

adsorbed monolayer can be studied starting from the kinetieOv€rage can be obtained fromth) using the fact that the

equation for the evolution of the free gaps. We summarizdarticle number is equal to the number of gaps,

the method below, and a more detailed discussion can be 1

found in[19]. ax=J n(hydh. (12
Let G(h,t) be the number density of gaps with lengtlat 0

time t andk(h’,h) the probability per unit length and per

unit time that the deposition of a particle in a gap of lengthLet us remark that Eq(7) expresses the fact that the total

h’>1 produces gaps of lengthandh’ —h— 1. The govern- number of gaps of length can be computed from the num-

ing kinetic equation for the irreversible adsorption process i€ of gaps with lengthh’>h+1 and the probability
[19] (see Fig. L p(h’,h) of obtaining an interval of length from an interval

of lengthh’. In principle, from Eqs(7)—(12) it is possible to
obtain n(h) and the saturation coveragg. if p(h’,h) is

9G(h.b) = _ko(h)c;(h,t)Jrgfoc dh’G(h’,t)k(h’,h), known. For each specific adsorption mo@éh’,h) must be
at h+1 previously known.
5 In order to obtainp(h’,h), we must solve Eq(1) with

two adsorbed particles limiting a gap of lendth according
wherekg(h) is the total rate at which gaps of lengthare  to the hypothesis assumed in the derivation of Efs-(7).
destroyed by the addition of a new particle: The accuracy of this ansatz is analyzed by means of Brown-
ian dynamics simulations in Sec. IV.

h-1
Ko(h)= fo dh’k(h,h"). ®) [lI. ADSORPTION PROBABILITY

In this section, we study the probability density of the
The gap distribution in the jamming state can be obtaineddsorption of a new particle on a line in which one adsorbed
without knowing the detailed time evolution. From the bal- sphere is already present. To find this probability we com-
ance equatiori5) it is possible to derive a time-independent pute approximate solutions of the Smoluchowski equation
equation for the total number density of gaps of lengthat (1) and we perform Brownian dynamics simulations. The
have been created at any time along the proa&ds), [19]: results obtained will be used in the next section to determine
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the structure and coverage of jammed lines. P
To use the integral equatidi), we need the probability pX)=—1 - (19
density p(h’,h) defined in(8), which can in principle be z=0

obtained by solving the Smoluchowski equatidh in pres- e
ence of two preadsorbed particles separated by a center tA(\)nother boundary condition is necessary to account for the

center distancé’ + 1. However, the solution to this problem presence of the previously adsorbed particle in the origin of

is very difficult and therefore we have adopted a Superposic_:oordmates. The hard sphere interaction between diffusing

tion hypothesis assuming that the joint effect of the tvvoand adsorbed particles implies no radial flux at the exclusion
preadsorbed particles can be obtained from a superpositi
of the one-patrticle effects.

The one-particle adsorption problem is defined as follows: (a¢(r,0)

sd)here(of radius R) centered at the origin; therefore we
ci'nave(see Fig. &

the center of an adsorbed particle is fixed at the point
(x,2)=(0,0) and, at timé=0, a new particle starts to move
from an initial point at a given distance from the surface .
Zo, With a random initial value ok. The initial heightz, is ~ The solutiong(r) can be split into two parts,

immaterial and it will be assumed to be infinite. In the pres-

ence of a nonvanishing gravity field, the particle will be ad- (1) = O+ B(r), (21)
sorbed with probability one. We normalifé(F,t) in such a 0 ) )

way that the initial probability per unit length is equal to one. Where ¢/®) is the solution corresponding to a clean adsorp-
Therefore, the probability density of adsorption at a point oftion line, andy/" reflects the presence of the adsorbed par-
the adsorbing ling=0 is ticle and must vanish at large distances. The solutiof16f

for ¢(O(r) with conditions(17),(18) is

or )r_l+Ng¢//(r=l,9)sin0=0. (20

p(X)=— foc.]z(x,z= 0,t)dt, (13 1
° YOx2)=-(1—e o). 22)
g

where J,(x,z,t) is thez component of the probability flux
defined in Eq.(2). Using the superposition hypothesis, we
write for the probability density of adsorption on a gap of
lengthh’:

The probability density of adsorption in the presence of the
fixed particle is obtained using E¢L9):

Py
0z

(gw(o)
p(h h)=N(h)p(h+1)p(h'=h), (14 P="g

=1+pW, (23
z=0 z=0
whereN(h’) is determined by the normalization condition wherep'!) is the deviation ofp from the uniform distribu-
(9). To obtain p(x) we do not need to solve the time- tion. In the interior of the region excluded by the fixed par-
dependent Smoluchowski equatiét). We only need the ticle (|x|<1), the total flux has to be zero and therefore
time-integrated probability density, pM=—1. In the available region|x|>1), p*) gives the
local increase of the adsorption probability due to the par-
- o - ticles that have been in contact with the adsorbed particle;
p(r)= J; dtP(r,t), 19 these particles are rejected in the RSA model, but here are
allowed to diffuse and will adsorb in the neighborhood of the
fixed particle. The presence of the fixed particle does not
change the total adsorption probability, so the integral of
p®) over the entire line has to vanish. Therefore one has

that obeys the equatidmbtained by the integration dfl)
and using dimensionless units

. a(r -
V2¢(r)+Ng%=0. (16) J p(l)dle. (24)
1

The boundary conditions satisfied lgy are the perfect ad-

. g ) >,
sorbing boundary condition on the lize=0: The equation and boundary conditions f#)(r) can be

obtained by substitution of21),(22) in (16),(17),(20). It is

not possible to obtain a solution for general valuesNgf

and different approaches have to be used in the limits of
small and large gravity.

¥(x,z=0)=0, (17

and the condition that the total probability flux coming from
z=x is 1 per unit length,
A. Small gravity

We obtain a multipolar expansion fpx) by solving the
equation for (1)(r) and substitution in(23). To obtain
#A(r) we use the Green function method, for the detailed

Using Eqg.(13) and the boundary conditiafd7), p(x) can  calculations see Appendix A. THéormally exac} result for
be obtained from/ as p(x) can be expressed in the form

a(r .
%)wgw(r)—q, P (18)
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K Ng 2 Ko(Ng/2) 4 -
5 = 2n-1| 5 X <|X|>1~N_9K1(Tg/2)~ n N, (28
POO=1+ o 2 (20 Dgan-1 1
n=1 Kan(_g) The mean distance increases without bound, as can be ex-
2 pected from the DRSA limit given by Eq26).
|x|>1, (25

B. Large gravity

where K,,(x) is the Bessel function of third kind and the  For large values oNg one can try to solve Eq16) by a
coefficientse,, - satisfy the infinite linear system of Egs. perturbative approach. In tHé,—c limit the higher order
(A18),(A19). derivatives in Eq.(16) are negligible, and an approximate
By substitution of the multipolar expressié@5) in (14)  equation is obtained retaining only the advective term. This
we obtain the probability density of adsorption on a gap ofis equivalent to completely neglecting diffusion. The corre-
lengthh’ for given Ny. The normalization factoN(h’) is  sponding solution satisfying the boundary condition at infin-
obtained by numerical integration ¢). For practical uses, ity is y= 1/Ng, which does not verify the boundary condi-
the serieg25) must be truncated by using a finite number oftions atz=0 andr=1. The reason is that, no matter how
terms; the larger the gravitational ¢t numberNy is, the largeN, is, diffusion becomes important near the boundaries
larger the number of terms that have to be retaine@®to  of the systemy must change appreciably in a tHioundary
achieve a given precision. We recall that if we want to obtainayer, and the corresponding derivatives are no longer negli-
the saturation coveragé,. we have to solve the integral gible in that layer.
equation(7) with the kernelp(h’,h) given by Eqs(14),(25). The problem can be solved using singular perturbation
If Ng is of order 1 we need only a few terms in the summa-techniques as discussed in Appendix B. The result is that, for
tion and the numerical solution of the integral equation islarge values oy, p®M(x) scales to a function of the form
possible, but for intermediate to high valuesh\yf we need a
very large number of terms and this expansion becomes use- pM(x)~NZ%pM[ (x—1)NZ, (29
less. Therefore, it is necessary to obtain an asymptotic ex- ) 1 . ] ] )
pression for large values ®f, to enable a description in the where functlor@( Vis defined in the appendix. The mean
entire range of variation dfly. We will return to this ques- distance at which a particle that hits the preadsorbed one can

tion in the next subsection. be adsorbed is therefore a quantity of ordgr™”
We can see how the DRSA res(ik9] can be recovered A

by taking theNy—0 limit in the previous expression. For x| = fw D (x)xdx~1+

small N, we need only one term in(25), because (1) 1 ) _5'3

¢on-1=1261,+O(Ng). Therefore,

N A= | ¢M(§)éEdE~1.106--. (30)
1 Kl ?g |X| 0
j— —_ S ~ 2
pO)=1+ RS Ng TO(Ng)~1+15% (26 Obviously this distance decreases whép grows because
Ky o diffusion is weak and the particles adsorb closeN{f=x, a

particle hitting the fixed sphere will roll over it and be ad-

The last approximation has been obtained using the sma$iorbed in its immediate vicinityat|x| = 1) as corresponds to
argument expansion of the Bessel functikn(x)=1/x. It  the rolling mechanism of BD. IN, is large but finite, diffu-
gives the known zero-gravity res(it9] and we see now that sion disturbs the deterministic motion and the new particle
it gives an approximation for small gravity valid in the re- can be adsorbed at some distance from the adsorbed one,
gion x<2/N,. leaving between them a gap of siae-Nj .

The first moment ofp® gives the mean distance to the ~ We can give a simple reasoning supporting the scaling
origin where particles touching the fixed one adsorb. Frongiven by Eq.(30) for large values oilN,. Particles falling
Eq. (25), and using the well-known formula for the deriva- over the fixed particle will roll down over it and diffuse away
tives of Bessel functionsK, 1(y)+K,.1(y)=—2K/(y) along a thin layer of thicknes8. This thickness can be esti-

we obtain; mated from the condition that the radial probability flux due
) to gravity, which is proportional t?éNgsing, has to be com-
® 2 < (2n=1)¢zn-1(Ng) pensated with the diffusion flux that can be estimated as
<|X|>1=f p(X)xdx= — Z N N 6~1. Therefore, in dimensionless units the boundary layer
1 T n=1 s} g . .
> 2n—1(7) thickness is
N : N 5(6)= — 31
><(—1)“+1{K0(7g +22 (—1)i—1K2i2(79”. (6)= N, sine" 3D
1=2
2 This thickness increases when the particle approaches the

line #=0. For small angles the surface of contact between
ForNg—0 only the first term of this sum has to be retained,the particles becomes vertical, and the rolling picture is no
obtaining longer applicable. Instead, we can imagine that particles dif-
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fuse away from the fixed sphere at a certain an@je,This

Sx=12ty=(2/Ny)?3 This simple argument gives an expo-
nent and order of magnitude that agrees with the more exact L5
singular perturbation resu(80).

5.0 T . ]
separation is expected to occur when xheoordinate of the ] ]
center of the falling particle is beyond the region excluded 45 4 E
by the fixed one. Given EQq.(31), this implies 4.0 3 3
[1+ 8(6,)]cosfy=1. Solving this equation for small angles,
we obtaindy=(2/N,) 3. From this point the incident particle 357 E
falls a distancey=(2/N,) 153 the dimensionless time needed 3.0 ] 3
to reach thez=0 line is ty=z,/Ny=2"*N;**. Due to the
horizontal Brownian motion performed during the particles’ Q25 4 E
falling, one expects a horizontal deviation of order 2.0 1 3

1.0 4 "
C. Brownian dynamics simulations 0.5 3 ]
Computer simulation allows us to study the adsorption 0.0 T T
probability for the whole range df, values and to verify the ' ' X/ZR '

validity of the results obtained in the previous subsections.

The algorithm developed here will be also used in the fol- - ) o
lowing section to study the structure of jammed lines. FIG. 2. Probability density of adsorption in presence of a pread-

We consider, as described in Sec. Il, a suspension oforoed particle as a function of distance fg=10. Solid line:
Brownian particles that is dilute enough to assume sequenti@um.pOIar SO.IUt'On of transport e.quat'dﬁs) including five terms.
adsorption. One by one, the center of mass of a new particIeSOtS' Brownian dynamic simulations.
starts its motion at a fixed vertical positiag and at a hori-
zontal positionx, chosen at random from a uniform distri- ~ To complete the simulation algorithm, we need a collision
bution. The value of, does not affect the final adsorption rule to use in the case that an incoming particle touches the
probability as far as in the initial position there is no possi-Preadsorbed one. We consider two collision rules, depending
bility of interaction with the adsorbed particles, that is, " Whether at the collision instant the particle is performing
z,>1. In our simulations we take,=1 to minimize the @ deterministic or a random displacement. If the collision
simulation time required. occurs during the deterministic displacement, we consider

The particle motion is discretized in time in the following that the incoming particle rolls over the preadsorbed one.
way. At every time stepAt the particle develops two mo- The collision rule for the Brownian motion is a perfect re-
tions performed sequentially in the simulations. It travels aflection of the particle trajectory, as in an elastic collision
vertical distance\ zy;= — NgAt (in the dimensionless units With an infinitely massive particle. This rule is an approxi-
introduced in Sec. )las corresponds to the sedimentationmation, valid if the Brownian displacement is sufficiently

under gravity and a stochastic displacemArrT];d as corre- small in relation to the radius qf the boundary. .
sponds to the Brownian motion. Therefore When the center of the particle reaches k€0 line, we

consider that the particle adsorbs at the contact point, which
Af=— NgAt§+AFrd. (32) is recorded. By ite_ration of this _algorithm one_obtains a hi_s-
togram of adsorption frequencies as a function of the dis-
As is well known, the Brownian displacement in two dimen- tance to the fixed particle.
sions follows a normal distribution law with zero mean and For small values o, the results obtained by Brownian
variance dynamics simulations agree with the analytical results ob-
tained from the superposition approximation, Et4), and
(AF,Z(,)=4At. (33)  the multipolar expansion, E@25), see Fig. 2. For large val-
ues of Ny the simulated distribution of adsorbed particles
After these two motions are generated, the simulation time ispproaches the scalinfg@9) predicted by the asymptotic ap-
increased byAt and the algorithm is repeated until the par- proximation, see Fig. 4.
ticle reaches the adsorbing lirre=0. The time stepAt is To obtain a simple analytic approximation in the interme-
chosen in such a way that ensures a typical displacement diate to high Ny regime, we fit the simulation results for
the particle to be of magnitudewhich is small compared to p(x) with an exponential distribution,
the particle diametere<<1. The typical Brownian displace-
ment is of orderyAt, so At<e2. On the other hand, the
deterministic displacement is N At, soAt<e/N,. There- p(x)=1+be PP~ |x|>1. (35)
g=h g
fore, we impose

At=min[ 62,6/Ng]_ (34)  Although the asymptotic form of the adsorption probability
obtained in Appendix B is not exactly an exponential, this is
The value ofe is restricted by computer time limitations. All a simple fitting function. To determine the value ofN,)
the simulations reported in this paper were obtained witlfrom the simulation results we impose the condition that the
€=0.05. thickness of the exponential has to be equal to the thickness
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FIG. 3. Probability density of adsorption in the presence of a

preadsorbed particle as a function of distance Ngr=60. Solid FIG. 4. L ithmic of th led probability density of ad
line: exponential distributior§35). Dots: Brownian dynamic simu- . " =™ ogarithmic of the scaled pro a_‘ ity -ensn)_/ ot adsorp-
lations. tion in the presence of a preadsorbed particle. Simulation results for

Ng=60 (crossep and Ng=300 (triangles. Continuous line: Nu-

. . . L. .. merical solution of boundary layer equation.
of p(!) obtained from the simulations. This is the condition yiayereq

of mfsl)fimu_m likelihood for an exponential distributig8], IV. STRUCTURE OF THE ADSORBED LAYER
and it implies
In this section we present results concerning the structure
1 of the adsorbed layer at jamming, characterized by the cov-
5:<|X|>1_1' (36) eraged,, and the radial distribution functiog(r). In Sec.
IV A we study the variation of the jamming coverage with
~ Ng and in Sec. IVB we analyze the local structure of
For large values oNy we expect, based on our asymptotic jammed surfaces described bgr). The results obtained by
argument (30, a dependence of the form pumerical integration of Eq7) using(38) or (25) are com-
(IXIy1=1+aNg;** To determine the constant we com-  pared with simulation results.
puted the mean distance of the adsorbed particles to the pre- The characteristics of the simulations are as follows. For
viously adsorbed one for differefdy numbers. The simula- each value ofN; we have filled 1000 lines of length
tions were performed foNy=60,80,100,140,200,400,600 L =100 and we have computed the mean number of particles
using 40 000 particles in each simulation and we obtained: adsorbed at saturation. The statistical uncertainty on the cov-
erage(error bar$ is estimated by a 95% confidence interval.
N2/3 In principle, particle trajectories are simulated as long as the
b=—2, «=1.08..., (37) surfaces are not entirely covered, but there exist some special
@ cases that demand more attention to avoid prohibitive com-
puter time. Consider a particle diffusing in the region be-
in agreement with the value 1.80.. obtained from the tween two preadsorbed ones, being the interval of the line
asymptotic solutiort30). In Fig. 3 we compare this exponen- petween these preadsorbed particles of length less than 1.
tial fit, Egs. (35), (37), with the results of the Brownian dy- This particle only can adsorb if it obtains sufficient thermal
namic simulations foNy=60. energy to overcome the gravitational force and the geometri-
Making use of the superposition hypothe€l)) and the  cal barrier delimited by the preadsorbed particles. The time
normalization conditiori9) the probability density of adsorp- needed to escape from these “geometrical barriers” grows

tion in a gap can be expressed in the simple form: rapidly with Ng. For Ng~1 the particle can return to the
bulk after a small time and try to adsorb elsewhere. How-

1+be PNt pe b’ —h-1) ever, for sufficiently highN, this time becomes very large

p(h’,h)= (38 (infinite in the case of B In the practical situation, these

' —b(h’' -1 . . .
h'+1-2e™™ ) particles play no role because other particles, coming from

the bulk, will adsorb in the free gaps. There are different
Although the exponential distribution does not reproduce always in which this effect can be taken into accol28]. In
the details of the simulates(x), it approaches its main char- our simulations we adopt the following criteria: we choose a
acteristics, and the corresponding kerr8B) is simple maximum residence time and, if a given particle remains
enough to allow a numeric evaluation of the integral equatimet>in a trap, it is eliminated from our simulations and
tion (7). a new particle starts the motion following the previous rules.
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081 short dashed line foR* <1.5.

3 BD —— Three main regions can be recognized in the graph:

0.80 3 - E (1) R*=<1: In this region the Brownian motion dominates.
£ 3 The coverage varies slowly witR* and its value remains
close the DRSA value{,.=0.7506). For example, for the

078 E E R*=1 case we obtaim,.=0.7539 by means of simulations
E 3 and the numerical solution of the integral equation with the

0.78 3 multipolar kernel yields 6,,=0.7528. Simulation results

3 E E agree with the curve obtained using the multipolar solution

0.77 F ] of transport equation. The curve obtained using the exponen-
2 / E tial kernel(38) gives smaller values fof,, and in the limit of

076 E / E vanishing gravity it approaches the RSA coverage
£ E 0.,=0.747 93 . .. instead of the DRSA value.

0.75_5 E (2) 1=R*=<2.5: 6, rises quickly withR*. In this region
3 = t — the numerical solutions of the integral equation with the mul-
g 3 tipolar expression and with the exponential approximation

0796705 1.0 1.5 2.0 25 3.0 35 4.0 45 5.0 (38) are close. However, they show a slight discrepancy with

R’ the simulation results that are systematically greater.

(3) R*=2.5 6, approaches slowly to the BD limit
FIG. 5. Comparison between the saturation coverageas a  (9BP=0.8086 ...), for example, if we takeR*=10
function of R* obtained with several method&) Dots: Brownian (Ng= 104) simulations gived,.=0.807 . . . . Weobtain good

dynlamic ?imu7lati0_n(b)thSoIid Ili'ne:l num?rif:al ZOlt“tion i’f:le ;_”te' agreement between the simulations and the solutiofi)of
gral equatior(7) using the multipolar solutiof@5) truncated to five ,qiny the exponential kern¢88). A simple expression de-

for R*<1.5 and the exponential fitting35) for R*>1.5. (c) . . R
Dashed line: asymptotic expressi@®9). (d) Short dashed line: con- chrEZs. the asymptotic approach to the strong gravity limit,
g :

tinuation of the numeric solution with exponential fittig5) for
RP<15. 6..(Ng>1)= 65°— 0.2448\ 2%, (39
We take a different characteristic residence timfor each

Ng. For smallNg only a few particles are eliminated, but for This expression is shown in Fig. 5 by dashed lines, and can

Ng>1 usually all particles that fall into intervals of length bf ;bta'tﬂed cor|1'S|'?e;r|ng afsw(rlg)hﬁed modetl.tFotr) Iargfe vall:es
h<1 are eliminated. FOR*<1 we taker=15, 7=8 for Of g, the explicit Torm ofp™* Seems not to be of grea

1<R*<2 andr=1 for R*>2. We have checked that our importance provided that it gives a value for the mean dis-
results are not sensible to incrementsrofFinally, the last tance between the adsorbed particles and the preadsorbed

stage is simulated in the following way. When only gapsOne |tndagr(_atement with Ec(S?). We C:.néf)s? :jnstee}g (()jfghe
with lengthh’ <3 survive, the initial positiox, is chosen at exact density, an approximation in Whipht - 1S described by

: - : o AN-23;
random between the centers of the particles limiting thes& normalized §tep funct|.on of thlckneséﬂ>l—2ANg n
gaps, az=1 as for the other particles. When only targets of2gréement with(30). This model is exactly solvablg24],

lengthh’ <2 remain(at most one particle can be adsorbed i

ng|ving (39) in the limit Ng—o0.
each we fill these by using a RSA algorithm, i.e., by ran-
domly placing a particle in it without any transport process.

We have performed some control simulations to study the
origin of the slight discrepancy between the solid line and

Only a few particles are deposited following these two |aslsimulations in region 2 on the graph. This effect is due to the

rules and therefore the structureharacterized byy(r)] is

fact that for this range oNg the probability density of ad-

P sorption on a gap not only depends on the gap’s limiting
not significantly altered. particles but can also be influenced by third neighbors. This
can be clearly shown by performing simulations with three
preadsorbed spheres and comparing the resulting adsorption

For adsorption on an infinite line, the saturation coveragealensity probability with the result of the superposition ap-
can only be a function of the unique dimensionless parametgsroximation(14). In Fig. 6 we show the adsorption probabil-
present in the transport equation, namely,. It is more ity density in a situation with three pre-adsorbed spheres on
convenient to represent the variation &f as a function of a line of lengthL =20 andR* = 1. Between spheres one and
the dimensionless radiuB, defined in Eq(4), which gives  two there is a gap of length’ = 2.5 and between spheres two
a more compact scale thawy, . and three there is a small gaphof=0.05 that does not allow

In Fig. 5 we show the variation af,, with R* obtained by  particle adsorption therein. Simulation results show an asym-
simulation(crossesand by solving the integral equatidi) metric adsorption probability, which clearly displays the ef-
following the numerical method described[it9]. The solid fect of the third particle. The solution corresponding to the
line in the regionR* <1.5 (Ny=<10) has been obtained with superposition hypothesi€l4), which assumes that the ad-
the kernel given by substitution of the multipolar expressionsorption probability in one gap is given by the product of the
(25) truncated to five terms in E§14). We also solve, for all one-particle solutions corresponding to the particles at the
values ofR*, the integral equatiorf7) with the kernel ob- ends of the interval, shown in the continuous line, is sym-
tained using the exponential approximation, E88); the  metric. We also note that the simulation results fit well with
result is represented by the solid line ®f >1.5 and by the a distribution constructed as a product of the three one-

A. Coverage at the jamming limit



54 IRREVERSIBLE ADSORPTION OF PARTICLES AFTER ... 3733

4.0 T

T
[ |

3.5 [ !

v
T
L

TTT T T

3.0

A

RS BN R R R RN 0 o Nk I I A
)
T
|

‘‘‘‘‘

Covo b b b v e by wp b Lo L Ladds
0.0773 1 23

o

FIG. 6. Probability density of adsorption in a line of length FIG. 7. Radial distribution functiorg(r) for R*=1. Dots:
40R in the presence of three adsorbed particles, at position8rownian dynamic simulations. Solid line: Calculationgifr) for
X1 =13R, Xx,=20R, X3=22.1R. (a) Dots: Brownian dynamic 1s<r=<2 using the numerical solution of the integral equati@n
simulations.(b) Solid line: superposition of the two one-particle for n(h).
solutions corresponding to the particles limiting each geap.

Dashed line: Superposition of the three one-particle solutions. large particles, and there is an increased probability of ad-

sorption close to already adsorbed particles. We can observe

particle solutions(dashed ling For largerR* values, the that the smaller the effect of gravilgs measured biR*),
ansatz of independence of gaps holds, and the theoretictde poorer the structure in the radial distribution function.
expression shows no significant deviation from their simulator 1<R* <2.5 not only the coverage changes rapidly with
tion counterpart. R* (as noted in Sec. IV Abut g(r) does also. Note for
example that, foR* =1.968, two secondary peaks are vis-
ible whereas only one is visible f®®* =1. ForR* >2.5 the
obtainedy(r) are very close to the correlation function of the

The radial distribution functiorg(r), reflects the correla-  pajjistic deposition model, although ti&function singulari-
tion existing between the adsorbed particles. The definitiogjeg present in the BD model at=1,2, ... are smoothed

adopted here is the usual one in statistical mechaisies, e to the effect of diffusion. Our model differs from other
for instance[26]). In this subsection, we present histograms

of g(r) in the jamming limit, obtained from the Brownian

B. Radial distribution function at the jamming limit

dynamic simulations used in the previous subsection to de- 11— J
termine 6, . ok
In Figs. 7 and 8 we showg(r) for various values of .
R*. At the jamming limit,g(r) presents a logarithmic sin- oF
gularity atr =1, like the RSA model. The simulation results, 8lb

however, are histograms that have a finite value at contact ﬁ
representing an average gfr) over a finite distance inter-

TR B R I A AN S A Y

particles after a few diameters. We recall that the variation of
0., with R* in this region is less than 1%, as we pointed out

val. This contact value is nearly constant Rf<1 whereas -6 u

it grows with R* for R*>1. %o 50 S SN
For R*<1 ourg(r) are indistinguishable from the results - ]

obtained for DRSA R* =0). Theg(r) for R*=1 is shown i ]

in Fig. 7; note the disappearance of correlations between 3k .

.
\ + "

[\
TT T T T FTT]

in the previous section. Therefore, we can conclude that for LE S, g, ]
R* <1 the structure of the adsorbed layer is almost indepen- ol S ]

. 5
dent of gravity. r/2R

In Fig. 8 we show the radial distribution function for
Ng=30 (R*=1.968) and forNy=240 (R*=3.310). A EG. 8 Simulation results forg(r) corresponding to
comparison between Figs. 7 and 8 shows that peaks ip*=1.968 (N,=30), squares anR* =3.310 (N,=240) displaced
g(r) increase and are steeperRis increases, revealing the four units, crosses. Solid line: Calculationgfr) for 1<r<2 and
tendency of large particles to pack closer together thami,=30 using the numerical solution of the integral equati@n
smaller ones. This is because diffusion is a small effect foDashed line: the same fot,= 240.
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generalized modelgl 6] in which the § funciton singularities close to the DRSA R* =0) form. Therefore, the effect of

appear only folR* =, gravity is nearly negligible in this regime. FdR*=1,
At the jamming limitg(r) cannot be obtained completely 6..(R*) grows quickly withN4 andg(r) displays peaks that

using the formalism presented in Sec. Il, but it can be obemerge more significantly. The peaksdfr) increase and

tained for I=<r=2 noting thatn(h) is equal tog(h+1) for  are steeper wheR* grows reflecting the tendency of large
0=<h=1 except by the normalization. By the definition of particles to pack closer than smaller ones. R§=2.5 the

these functions one has saturation coverage slowly approaches the BD value follow-
) ing the asymptotic expressiai@9). In this regimeg(r) is
n(h)=62g(h+1), h<1. (40 very close to its BD counterpart, although in our model
g(r) takes finite values at=1,2, ... due to the effect of

The numeric solution of Eq.7) performed in the previous diffusion instead of the delta function singularities of the BD
subsection to find,, also gives the gap densityh). The case.

result agrees with the radial distribution function obtained by It can be easily verified that the same perturbation tech-
simulation according to Eq@40), as shown in Fig. 7 for niques used in Appendix B can be applied to {2e-1)-
R*=1 and in Fig. 8 forR* =1.968, 3.310. dimensional case, leading to the scaling given in &%)
with the same functionp™). This fact provides a physical
basis, at least for large gravity, for the scalingfaf{ R*) in

a common curve for the21 and 1+ 1 cases. In the asymp-

A (1+1)-dimensional adsorption model has been anatotic limit the relevant property of the adsorption probability
lyzed to investigate the influence of transport mechanismss its thickness, and one can replad® with a step function
(diffusion and sedimentatigron the structure of irreversibly with the same thicknesd, = kNg’Z’3 We expect that the jam-
adsorbed monolayers of particles. We have studied a simpliming coverage approaches the ballistic limit linearlyAn
fied model in which hard spheres suspended in a twoand therefore
dimensional fluid adsorb onto a line. The results may be
relevant to understand the more realistic case of adsorption 0., (N;>1)
on a surface, if the suggested scaling behavior between the E?D
(1+1)- and (2+1)-dimensional cases hold21]. An argu- O
ment in favor of this hypothesis for large gravity is presented
below. whereay is a constant that depends on the dimension of the

By means of Brownian dynamic simulations we have ob-system. Thus, with an adequate change of scale the curves of
tained the saturation coverage and the radial distributiom’m(Ng)/02D in 1+1 and 2+1 dimensions are coincident, at
function g(r) for different values of the gravity number least for large values dfly. This scaling has been observed
Ng. These results have been compared with those obtaindd simulations and seems to apply for all values\yf[21].
from an approximate analytic formalism: first we analyze the In a more realistic extension of our model, hydrodynamic
probability density of adsorption onto a gap with the help ofinteractions must be considered in the transport equation, but
the transport equation and Brownian dynamic simulationswe expect that their effect is small. In the DRSA case, hy-
once we know this probability distribution, the saturationdrodynamic interactiong22] make the adsorption probabil-
coveragef,.(R*) and the density of gaps at the jamming ity nearly uniform due to the enhanced mobility parallel to
limit can be obtained numerically by using an integral equathe surface and therefore the coverage is expected to be close
tion developed in a previous papdm9]. to the RSA case. In the case of BD it has been sh{&}

We have introduced a superposition hypothesis, assumintipat while the jamming coverage does not change signifi-
that the adsorption probability at a given point depends onlcantly, the local structure is strongly affected by the hydro-
on the limiting particles of the gap in which the particle dynamic interactions.
adsorbs. As showed by simulations, this hypothesis fails Note added in proofThe authors would like to note that a
when the gap is small and<IR* <2, but this affectsd., similar problem has been studied by Ho Suk Ckih.D.
only slightly. thesis, Purdue University, 1995n this work the transport

The probability density of adsorption in the presence ofequation of a sphere diffusing in a gravitational field was
one particle was obtained by solving the transport equatiosolved numerically. The results are in essential agreement
as a multipolar expansion. This expansion is useful for lowwith those of our papetSec. Ill). The authors believe this
to intermediateN, values, but not for higiNg numbers. In  fact should be properly represented.
the largeNg regime we have shown, using singular pertur-
bation techniques, that the probability density of adsorption
p(x) has the scaling forni29). The simulations show that
this scaling is approximately satisfied even for moderate val- Useful comments by Ignacio Pagonabarraga are acknowl-
ues ofNg. Instead of the exact scaling function, we haveedged. J.F. is supported by a doctoral scholarship from the
useda simple exponential function for the numerical compuPrograma de formacid’investigadors of the Generalitat de
tations that fits the simulation results. The corresponding nu€atalunya under Grant No. FI/96-2.683. We also acknowl-
meric solution of the integral equatiai@) agree well with  edge financial support from the DirecniGeneral de Inves-
the simulations even foR* >1. tigacion of the Spanish Ministry of Education and Science

The properties of the adsorbed layers at jamming are agGrant No. PB94-071)8and the European Union under Grant
follows. ForR*<1, 0,.(R*) varies less than 1% arg{r) is No. ERBCHRXCT 920007.

V. CONCLUSIONS

~1—a4Ng ?, (41)
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APPENDIX A: MULTIPOLAR SOLUTION . ™ .. of . oG
OF TRANSPORT EQUATION f(l")ZJ dG[G(r,r’)&—r—f(r)a—r ,
0 r=1
In this appendix we obtaig(?(r) using the Green func-
tion method. The equation and boundary conditions for r'>1 (A9)

#1(r) can be obtained by substitution @R1),(22) in
(16),(17),(20). If we write V(1) =f(r)e Ne?2 the equa-

; ; pansion of the Green functioi\6) that can be obtained us-
tion for f(r) is

ing a well-known theorem for the Bessel functid2g]:
2

- Ng .
v2H(r) = 22H(r), (A1) Ko( BNI5+15— 2111 ,c08p)
with boundary conditions: = z Km(Bra)l(Bri)cosme,
m=—w
f(x,z=0)=0, (A2)
r=r, (A10)
at(r) Ng._ . . . .
p” +7sm0f(r= 1,0)= —singeNg'2s"?  (A3)  Use of (A10) in (A6) yields:
r=1

The Green function corresponding (#81) and satisfying the

G"-)r__ziK Ng/l Ng . . '
boundary conditior(A2), G(r.r"), is defined by (rr)=—2 Ka| 5 | 51 |sin(nf)sin(ng’),

T n=1
N2 '
VEG(r,r) = 5 G(r.r)=58(r—r"), (Ad) r<r’, (A11)
R X=rcosd, z=rsinf, Xx'=r'cosd’, z'=r'sing’.
G(x,z=0r")=0. (A5)
Substitution of this expression in EGA9) yields
Using the method of images, it is easy to obtain the solution
to this equation, that can be expressed using Bessel functions 5 N N
of the third kind: f(ry=——=> K,|=2r"|1.| =2|sinne")
T n=1 2 2
(7= o | Kol 2817 = 77| |~ Ko| 217 | .
’ 27| 0 2 0 : fwda' aaf +22KN9’
) ) ) X . sin(n )§r=1 w2 Kn 7r
r=(x,z), r'=x'.,z"), r*=x',-2z'). (AB)
Ng | Ng | Ng) | . /
We can obtain an integral equation ﬂ((IF) making use of XT ntil 2 BRUEE! 2 sin(n")
the properties of the Green function. If we multiply E41)
by G(r,r’) and Eq.(A4) by —f(r) and add the results, we XJ dof(r
obtain: 0
=1,0)sin(né). (A12)

G(r,r)V2f(r)—f(r)V2G(r,r")=—f(r)s(r—r’).

To take profit of this expression, we use the Fourier ex-

(A7)

Now, integrating(A7) over the whole volumé/, limited by

Now, we note that our problem is symmetric under the
changex— 7 —Xx, and, therefore, only the integrals with odd

the adsorbing line a=0, the excluded volume of the pread- " contribute. In addition, if we apply the boundary condition
sorbed particle and a closing surfaBeand then using the of null radial flux at the excluded area defined by the pread-

Stokes theorem, we obtain:

f(F’)z—deV[G(F,F’)VZf(F)—f(F)VZG(F,F’)]

=—f dé[G(F,F’)ﬁf(F)]+fdé[f(F)ﬁG(F,F')].
(A8)

If the surfaceS goes to infinity and we use the boundary

conditions forf and G(r,r’), the only contribution to the
surface integrals comes from the excluded area of the pread-

sorbed particle. Therefore, usinkts=Rd#=d# we obtain:

sorbed sphergA2) and definep(6)=f(r=1,0) we obtain

.2 N -
f(r')=;nzl K2n1(79r’)sin(2n—l)0’Jo de

) N
xsin(2n—1) 0( singeNg/2)sinf) an(—g)

2
N N N N
N 79I2n1<7g)sin0+79 |2n2(79)
Ng
Flan| 5 || [9(0) ] (A13)
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If we define the Fourier-sine transforms:

92n-1(Ng) = fo dé sin(2n—1) 6 singeNg/2)siné,
(Al4)

Ton-1(Ng)= foﬂda Sin(2n—1)0 sinde(6), (A15)

f2n-1(Ng)= f;de sin2n-1)0(6),  (AL6)

finally one obtains forf (r,6) (we omit’ for simplicity):

[
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Z

2 * K2n1(_gr)

2 ).
f(r.0)=—2 @on-1— g SiN2n—1)6.
2n—1 2

(A17)

By substitution ofr=1 in (A13) and making use of defini-
tions (A14—A16) we obtain the following equations for the
coefficientsepo,_1:

Ng Ng
¢®on-1=Kon-1 2 lon—1 o

Ng
Oon-17F 7F2n—1
X

1_¥K2n—l(%) |2n—2(% +|2n(%”
(A18)
|
2 —4(2m—-1)(2n—1) (A19)

an—1:; E

&1 (2n+2m—3)(2n+2m—1)(2n—2m+1)(2n—2m—1) ¥2m-1-

The probability density for the adsorption of a particle can besolution satisfying the boundary condition at infinity E#j7)
obtained in a form of a multipolar expansion by using Eq.is a constant,

(A17) with the definition of f(r), yV(r)=f(r)e Ne?? in
definitions(21), (23):

Ng
o K2n—l _|X|
1+ 2 > (2n—1 2
X)=1+ —— n— o —,
p(X) 7T|X| n:l( )Pon—1 Ng
Kon-1 >

|x|>1. (A20)

For small values of Ny, one has gy, 1=(7/2)d;

+0(Ng), and all the terms in Eq(A20) except the first
vanish to ordelO(Ng), giving ¢, 1= (7/2) 5,1+ O(Ny).

APPENDIX B: BOUNDARY LAYER SOLUTION
OF THE TRANSPORT EQUATION

out=1/Ng. (B1)
Note that this is an exact solution of the transport equation,
and therefore the expansion of the outer solution ends here.

This outer solution does not match the boundary condi-
tions atz=0 andr=1, and therefore some boundary layers
have to be introduced.

(i). A first boundary layer, appears near the lize 0,
where the value ofy has to change from the outer value,
1/Ng, to the value imposed by the boundary condition, O.
Derivatives with respect t@ become large, and the term
8%yl 922 in the Laplacian is no longer negligible. The bound-
ary layer thickness can be estimated from the condition
that the derivatives with respect roare the dominant terms
in the transport equation and have the same order. This im-
plies e=O(N§1). Therefore, the first approximation to the
inner solutionin this region is the solution of

Our aim in this appendix is to obtain an approximate so-
lution of the transport equatiof16) valid for large values of
Ng. WhenNq is very large, the Laplacian term in the trans-
port equation becomes negligible in the entire domain except
near the boundaries, where the value of the derivatives cahhe solution satisfying the boundary conditionzat0 and
be large. We have then a singular perturbation profjlgdh ~ matching the outer solution far>Ng * is
An approximate solution in this limit can be reached by
matching different approximations in the bulk and in the
boundary layers that can appear near the boundaries.

The first approximation to theuter solutioncan be ob-
tained neglecting the Laplacian term in the transport equafhis is also an exact solution of the transport equation, so the
tion. The resulting equation is simply#/dz=0, and the expansion of the inner solution in this boundary layer ends

Pin Wi _

2 977 0. (B2)

V= (1-e M) (®3)
n Ng "
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here. In the absence of any adsorbed particle, no additional 522 (2 . Y gV
boundary layers are present and, in fact, we have reproduced Ep +sind P =—Ng 7 +coy 90
the exact solution for an empty line given by Eg2). K g K

(ii). In the presence of one particlerir=0, a new bound- =— Nglcosﬁe‘ 7sing
ary layer appears near the boundary of that particie].
The functiony has to change in a small boundary of thick- X[A'(8)—A(6)(n cost+tang)].
nessé from the outer form(B1), in which there is a radial (B8)

probability flux, to a form in which that flux vanishes at

r=1. The order of magnitude of the different terms of theThe first integral satisfying the boundary conditionzat 0

transport equation can be easily evaluated by writing it injg

polar coordinates, and considering that each radial derivative

introduces a facto®(5™1): e . -
+sindy'? = — N’lcosﬁj dzn'e 7 s

an g 0

Py 1oy 1% Y cosd dy

7 v Trzggz TNesind— -+ Ng—— - =0. X[A'(6)—A(6)( 75’ cosh+tand)].
(B9)

O(67%) 0(57H O(1) O(Ngo ) O(Ng)  (B4) It is not necessary to go beyond this calculation to obtain the

matching condition with the outer solution. It suffices to rec-

The first and fourth terms of this equation are the largesbgnize that the left-hand side of the last equatior=rilslg_,l

whenNy—c0, and the appropriatdistinguished limitis ob-  times the radial probability flux, and this quantity has to

tained when they have the same order of magnitude, that isnatch wheny—c with the outer value for this flux, which

when 5=O(N51). To obtain the solution in this boundary from (B1) is simply —sind. We obtain the condition:

layer, we define the scaled inner variabjeeNy(r—1), and

we expand the function//i'r'1 in successive approximations, . A'(6)—A(H)tand A(6)cosh

Y=y M+ ¢+ ... The first approximation to the inner —sing=cosy sing T Sirke

solution is then, retaining the terms of orc(é(Ng), (B10)

Py Py This is a differential equation for the unknown function
> +sing =0. (B5)  A(6), whose general solution &(6) = sing+Btang. The ar-

an an bitrary constanB has to vanish in order to obtain a finite

probability density for6= /2. This completely determines

The boundary conditions fog(*) cause the normal flux to the first approximation tay,
vanish aty=0 and the solution has to match the outer solu- However, this approximate solution is not valid for all
tion for —o. The first integral of Eq(B5) is immediate, values of the angl®. The reason is that the boundary layer
thickness is§=(Ngsin0)‘1, as is evident from EqB7), and
it increases with decreasing angle. Therefore, the boundary
i (1) _ layer approximation breaks down whér-0. It is easy to
*singy c(6). (B6) verify that the order of magnitude of the last term on the
left-hand side of Eq(B4), which has been neglected, be-
The term on the right-hand side is an integration constant®™c> _lc/:omparable to the reta|r_1e_d terms vyhen
that, in principle, can be an arbitrary function@fHowever, 0= 9(Ng " ). Therefore, the range of validity of the solution
the left hand side is proportional to the radial flux and, by the®Ptained is
boundary condition aty=0, the integration constant must Wi . i
vanish. We have, then, a homogeneous first-order equation gin=singe” 7"+ O(Ng 7), >Ny~ (Bl
for 1), whose general solution is

PWIEY

(iii). For values of the angle= O(N '), the last term in
Eqg. (B4) has to be included in the boundary layer equation
together with the two terms retained in the previous approxi-
mation. All these terms have the same order of magnitude
It is not possible to obtain the “integration constan®(¢)  when the radial thickness of the boundary layer is
by direct matching with the outer solution, because this first= O(Ngz’:’). These range of values for the angle and the
approximation to the inner solution vanishes whegp«. As  radius define a new boundary layer; we introduce new ap-
we will see, the reason for this is that the first approximationpropriately scaled variableg=(r —1)N2”® and 7= gN3"°.

1) is a quantity of orde’(1), whereas the outer solution We introduce also an asymptotic expansion of the probabil-
is O(Ny). Matching is possible only for the second-order ity density, i), = w1(Ng) pM+ ua(Ng) P+ - - -, where the
approximation,?), which is O(Ngl). Retaining terms of coefficients u;(Ny) are infinitesimals of increasing order.
orderO(Ny) in the transport equation we obtain the equationThe equation forp(*) is, retaining the terms of larger order
satisfied byy(?, in Ng:

Y =A(0)e" 75", (B7)
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apt  2pV gV #(6=0)=0. Indeed, wher9=O(Ng’1), we are in the same
a7 + Py +7 0E =0. (B12) situation as in the boundary layel)( the derivatives with
respect tod are of ordere= O(Ngl), and the boundary layer
We now have a parabolic equation that has the form of aquation is Eq(B2). The range of validity of the boundary
time-reversed diffusion equation with a drift proportional to layer approximationpi'hI is therefore
the “time” 7. For 7— o, the solution has to match with the
previous boundary layer solutiop;, valid for large values =Ny (), Nyt<o<l. (B1Y

of the angle. It is easy to see that this implies

(iv). A new boundary layer is needed fée= O(N;l), in

,u,l(Ng)=N§1’3, which the approximate transport equation is Hg2). The
solution of that equation satisfying the boundary condition at
pV—1e ™ 1t (B13) #=0is
That is, for large values of we recover a normalized “Bolt- l/,:r\{zc(g)(l_ e Ng%), (B16)

zmann distribution,” corresponding to neglecting theale-

rivative in Eq. (B12). This condition, together with the The arbitrary functionC(¢) is obtained by imposing match-
boundary of condition of zero normal flux af=0, ing with the approximate solution in the previous boundary
dpMiag+1¢M=0, completely specifies the function layer ('’ We obtain

»1). Furthermore, the condition of zero fluxg&t 0, implies

that the integral ofp() with respect to¢ is a conserved ¢y (r,0)=Ng oM (&, 7=0)(1-e M%), g<Ng 2.

guantity, and as a consequence of E(L3) it has value 1: (B17)

® W This function gives the correction to the probability flux,

fo ¢ (€& nde=1. (B14)  originated from the presence of the fixed partiglé?):

We have not been able to analytically solve E§12). Wy Y S N2BAD) & e —r_1\N23
However, it is easy to obtain a numeric solution satisfying pn= az|,_, Ng“¢(£,7=0), &=(r=1Ng".
the cited boundary conditions. The solution is a positive nor- (B18)
malized function, vanishing exponentially f@gr—«, and
with a well-defined limit whenr—0, ¢(&,7=0) (see Therefore, the numerical solution of E(B12) specifies
Fig. 4. An important quantity is its first momentA the final probability distribution. One important conclusion is
=[odégpM(£)=1.106. ... that, for large values oy, p‘*) scales to a function of the

The adsorbing boundary condition a+0, however, is form NS/3¢(1)[(r—1)NS/3]. It is easy to verify, using Eq.
still not satisfied by this approximation. From the previous(B14), that this distribution is normalized,
solution we have lim_oy=Ng ?¢*)(£,0) and this result,
obtained from an approximation valid fek=O(Ng "), has pr<l>(r)dr= fm¢(l)(§,72 0)dé=1.  (B19)
to be modified to agree with the boundary condition 1 0
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